证明该列表恰好有两个已排序的元素

时间:2018-03-05 11:40:46

标签: idris

我一直在尝试使用So类型来实现SortedTwoElems证明类型和功能isSortedTwoElems。我不确定如何实施proveUnsortedTwoElems案例。

以下是完整示例:

import Data.So

data SortedTwoElems : List e -> Type where
  MkSortedTwoElems : Ord e => {x : e} -> {y : e} -> (prf : So (x <= y))-> SortedTwoElems [x, y]

proveUnsortedTwoElems : Ord e => {x : e} -> {y : e} -> So (not (x <= y)) -> SortedTwoElems [x, y] -> Void
proveUnsortedTwoElems = ?how_to_implement_this

isSortedTwoElems : Ord e => {x : e} -> {y : e} -> (xs : List e) -> Dec (SortedTwoElems xs)
isSortedTwoElems []                      = No (\(MkSortedTwoElems _)  impossible)
isSortedTwoElems (x :: [])               = No (\(MkSortedTwoElems _)  impossible)
isSortedTwoElems (x :: (y :: (z :: xs))) = No (\(MkSortedTwoElems _)  impossible)
isSortedTwoElems (x :: (y :: [])) =
  case choose (x <= y) of
    (Left prf) => Yes (MkSortedTwoElems prf)
    (Right prfNot) => No (proveUnsortedTwoElems prfNot)

使用时执行:

proveUnsortedTwoElems (MkSortedTwoElems _) impossible

类型检查器抱怨:

proveUnsortedTwoElems (MkSortedTwoElems _) is a valid case

1 个答案:

答案 0 :(得分:4)

我从一个中间引理开始,当你发现两个相互矛盾的So时,它应该允许结束:

soNotTrue : So b -> So (not b) -> Void
soNotTrue {b = True}  prf prf' = absurd prf'
soNotTrue {b = False} prf prf' = absurd prf

然后你可以尝试写:

unsortedTwoElems : Ord e => So (not (x <= y)) -> SortedTwoElems [x, y] -> Void
unsortedTwoElems prf (MkSortedTwoElems prf') = soNotTrue prf' prf

此处的错误消息应该提醒您:Ord e中使用的So (not (x <= y))约束是unsortedTwoElems中绑定的约束,而MkSortedTwoElems内部使用的约束是有界的通过它。

无法保证这两个Ord兼容。

我建议的解决方案:重新定义SortedTwoElems,以明确它正在使用的Ord

import Data.So

data SortedTwoElems : Ord e -> List e -> Type where
  MkSortedTwoElems : {o : Ord e} -> So (x <= y) -> SortedTwoElems o [x, y]

soNotTrue : So b -> So (not b) -> Void
soNotTrue {b = True}  prf prf' = absurd prf'
soNotTrue {b = False} prf prf' = absurd prf

unsortedTwoElems : (o : Ord e) => So (not (x <= y)) -> SortedTwoElems o [x, y] -> Void
unsortedTwoElems prf (MkSortedTwoElems prf') = soNotTrue prf' prf