对于以下数据集,要获取 Col1 的总摘要值,我做了
import org.apache.spark.sql.functions._
val totaldf = df.groupBy("Col1").agg(lit("Total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"))
然后与
合并df.union(totaldf).orderBy(col("Col1"), col("Col2").desc).show(false)
DF。
+-----------+-------+--------+--------------+
| Col1 | Col2 | price | displayPrice |
+-----------+-------+--------+--------------+
| Category1 | item1 | 15 | 14 |
| Category1 | item2 | 11 | 10 |
| Category1 | item3 | 18 | 16 |
| Category2 | item1 | 15 | 14 |
| Category2 | item2 | 11 | 10 |
| Category2 | item3 | 18 | 16 |
+-----------+-------+--------+--------------+
合并后。
+-----------+-------+-------+--------------+
| Col1 | Col2 | price | displayPrice |
+-----------+-------+-------+--------------+
| Category1 | Total | 44 | 40 |
| Category1 | item1 | 15 | 14 |
| Category1 | item2 | 11 | 10 |
| Category1 | item3 | 18 | 16 |
| Category2 | Total | 46 | 44 |
| Category2 | item1 | 16 | 15 |
| Category2 | item2 | 11 | 10 |
| Category2 | item3 | 19 | 17 |
+-----------+-------+-------+--------------+
现在我想要将整个数据集的摘要如下所示,其中Col1摘要为总计,并且具有所有Col1和Col2的数据。 的必需。
+-----------+-------+-------+--------------+
| Col1 | Col2 | price | displayPrice |
+-----------+-------+-------+--------------+
| Total | Total | 90 | 84 |
| Category1 | Total | 44 | 40 |
| Category1 | item1 | 15 | 14 |
| Category1 | item2 | 11 | 10 |
| Category1 | item3 | 18 | 16 |
| Category2 | Total | 46 | 44 |
| Category2 | item1 | 16 | 15 |
| Category2 | item2 | 11 | 10 |
| Category2 | item3 | 19 | 17 |
+-----------+-------+-------+--------------+
我如何才能达到上述效果?
答案 0 :(得分:1)
从totaldf
val finalTotalDF= totaldf.select(lit("Total").as("Col1"), lit("Total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"))
然后将其用作union
df.union(totaldf).union(finalTotalDF).orderBy(col("Col1"), col("Col2").desc).show(false)
您应该拥有最终要求 dataframe
<强>更新强>
如果订购对您很重要,那么您应该通过执行以下操作,将T
列Total
Col2
改为t
total
import org.apache.spark.sql.functions._
val totaldf = df.groupBy("Col1").agg(lit("total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"))
val finalTotalDF= totaldf.select(lit("Total").as("Col1"), lit("total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"))
df.union(totaldf).union(finalTotalDF).orderBy(col("Col1").desc, col("Col2").desc).show(false)
你应该
+---------+-----+-----+------------+
|Col1 |Col2 |price|displayPrice|
+---------+-----+-----+------------+
|Total |total|90 |82 |
|Category2|total|46 |42 |
|Category2|item3|19 |17 |
|Category2|item2|11 |10 |
|Category2|item1|16 |15 |
|Category1|total|44 |40 |
|Category1|item3|18 |16 |
|Category1|item2|11 |10 |
|Category1|item1|15 |14 |
+---------+-----+-----+------------+
如果评论
中提到的订购对您很重要我希望将数据作为首要数据,所以我希望它在顶部,这对我来说是实际需求
然后您可以创建另一列进行排序
import org.apache.spark.sql.functions._
val totaldf = df.groupBy("Col1").agg(lit("Total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"), lit(1).as("sort"))
val finalTotalDF= totaldf.select(lit("Total").as("Col1"), lit("Total").as("Col2"), sum("price").as("price"), sum("displayPrice").as("displayPrice"), lit(0).as("sort"))
finalTotalDF.union(totaldf).union(df.withColumn("sort", lit(2))).orderBy(col("sort"), col("Col1"), col("Col2")).drop("sort").show(false)
你应该
+---------+-----+-----+------------+
|Col1 |Col2 |price|displayPrice|
+---------+-----+-----+------------+
|Total |Total|90 |82 |
|Category1|Total|44 |40 |
|Category2|Total|46 |42 |
|Category1|item1|15 |14 |
|Category1|item2|11 |10 |
|Category1|item3|18 |16 |
|Category2|item1|16 |15 |
|Category2|item2|11 |10 |
|Category2|item3|19 |17 |
+---------+-----+-----+------------+