我正在学习R并试图导入一些股票市场数据。样本数据是
{"2017-12-07 13:07:00": {"1. open": "169.7800", "2. high": "169.9100", "3. low": "169.7800", "4. close": "169.8500", "5. volume": "20659"}, "2017-12-07 13:06:00": {"1. open": "169.7920", "2. high": "169.8300", "3. low": "169.7400", "4. close": "169.7700", "5. volume": "17485"}, "2017-12-07 13:05:00": {"1. open": "169.8600", "2. high": "169.8600", "3. low": "169.7350", "4. close": "169.7924", "5. volume": "19789"}, "2017-12-07 13:04:00": {"1. open": "169.8000", "2. high": "169.8800", "3. low": "169.7600", "4. close": "169.8600", "5. volume": "25589"}, "2017-12-07 13:03:00": {"1. open": "169.7800", "2. high": "169.8100", "3. low": "169.7100", "4. close": "169.8100", "5. volume": "19679"}, "2017-12-07 13:02:00": {"1. open": "169.9400", "2. high": "169.9400", "3. low": "169.7700", "4. close": "169.7799", "5. volume": "46347"}, "2017-12-07 13:01:00": {"1. open": "169.9540", "2. high": "170.0200", "3. low": "169.9400", "4. close": "169.9500", "5. volume": "66847"}, "2017-12-07 13:00:00": {"1. open": "169.9400", "2. high": "169.9439", "3. low": "169.9100", "4. close": "169.9400", "5. volume": "8546"}}
我试图以一种我可以有时间戳和值的方式加载它。我现在已经尝试了这个
tmp <- fromJSON(readLines(i))
data <- data.frame(matrix(unlist(tmp),ncol=5,byrow = TRUE))
此代码让我拥有值,但我无法保留时间戳。请指导我如何获得值和时间戳。
答案 0 :(得分:1)
希望这有帮助!
<ul class="sidebar-menu" >
<li class="treeview" ui-sref-active="active" ng-click="vm.sideBar();" data-ng-repeat="menu in vm.menuItems">
<a ui-sref="app.{{menu.state}}" ng-hide="{{menu.visible}}" >
<i class="fa fa-{{menu.icon}}"></i> <span>{{menu.title}}</span>
</a>
</li>
</ul>
输出是:
library(jsonlite)
library(dplyr)
library(tidyr)
lst = fromJSON(txt)
transform(stack(lst), status=c(sapply(lst, names))) %>%
spread(status, values)
示例数据:
ind 1. open 2. high 3. low 4. close 5. volume
1 2017-12-07 13:07:00 169.7800 169.9100 169.7800 169.8500 20659
2 2017-12-07 13:06:00 169.7920 169.8300 169.7400 169.7700 17485
3 2017-12-07 13:05:00 169.8600 169.8600 169.7350 169.7924 19789
4 2017-12-07 13:04:00 169.8000 169.8800 169.7600 169.8600 25589
5 2017-12-07 13:03:00 169.7800 169.8100 169.7100 169.8100 19679
6 2017-12-07 13:02:00 169.9400 169.9400 169.7700 169.7799 46347
7 2017-12-07 13:01:00 169.9540 170.0200 169.9400 169.9500 66847
8 2017-12-07 13:00:00 169.9400 169.9439 169.9100 169.9400 8546