在JAGS中为R

时间:2018-03-02 21:14:56

标签: r jags runjags rjags

我正在尝试使用JAGS在物种组成数据中拟合一个多变量模型,在R中实现。我有3种物种相对丰度的数据(在[0,1]之间有界),其中两个是相关的。这是生成类似数据的代码。

#generate some correlated fractional composition data.
y1 <- runif(100,10,200)
y2 <- y1*1.5 + rnorm(100, sd = 5)
y3 <- runif(100,10,200)
total <- y1+y2+y3
y1 <- y1/(total)
y2 <- y2/(total)
y3 <- y3/(total)
y <- data.frame(y1,y2,y3)

y是我的三个因变量y1y2y3的data.frame。我想为这些数据拟合一个仅截距模型,使用dirlichet disitribution(beta分布的多变量扩展)来计算因变量之间的协方差。

我有点卡住了。我可以使用R中的runjags包使用beta分发对单个因变量进行编码,如下所示:

library(runjags)

#Write JAGS model, save as R object.
jags.model = "
model{
  # priors
  a0 ~ dnorm(0, .001)
  t0 ~ dnorm(0, .01)
  tau <- exp(t0)

  # likelihood for continuous component - predicted value on interval (0,1)
  for (i in 1:N){
    y[i] ~ dbeta(p[i], q[i])
    p[i] <- mu[i] * tau
    q[i] <- (1 - mu[i]) * tau
    logit(mu[i]) <- a0
  }
}
"

#generate JAGS data as list.
jags.data <- list(y = y1,
                  N = length(y1))

#Fit a JAGS model using run.jags
jags.out <- run.jags(jags.model,
                     data=jags.data,
                     adapt = 1000,
                     burnin = 1000,
                     sample = 2000,
                     n.chains=3,
                     monitor=c('a0'))

Mu问题是:如何使用JAGS中的dirlichet分布将其扩展到多变量情况,在R中实现?如果我们可以考虑y矩阵中的协方差,则可以获得奖励。

1 个答案:

答案 0 :(得分:0)

这是JAGS中一个简单的解决方案,使用原始问题中提供的伪数据。

JAGS数据对象:

y <- as.matrix(y)
jags.data <- list(y = y,
                  N = nrow(y),
                  N.spp = ncol(y))

JAGS模型作为R对象jags.model

jags.model = "
model {
    #setup priors for each species
    for(j in 1:N.spp){
      m0[j] ~ dgamma(1.0E-3, 1.0E-3) #intercept prior
    }

    #implement dirlichet
    for(i in 1:N){
    for(j in 1:N.spp){
         log(a0[i,j]) <- m0[j] ## eventually add linear model here
      }
     y[i,1:N.spp] ~ ddirch(a0[i,1:N.spp]) 
    }

} #close model loop.
"

继续适应模型,监测m0拦截参数,它是一个向量,是每个物种群的拦截。

#Fit a JAGS model using run.jags
jags.out <- run.jags(jags.model,
                     data=jags.data,
                     adapt = 100,
                     burnin = 100,
                     sample = 200,
                     n.chains=3,
                     monitor=c('m0'))