我对python很新,并且对高斯回归感兴趣。 我在py3.6和SKlearn 0.19下。
我有简单的代码,我得到一个关于cdist中的矢量维度的错误,由predict调用。我理解我的输入有些不好。但我不明白为什么......
我查看了高斯过程回归的示例,但它似乎不是最常用的工具。
提前感谢您的帮助。
干杯。
以下是我的代码示例:
import pandas as pd
import numpy as np
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor as gpr
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C
....
#X_train are the training samples
X_train= np.column_stack((xc,yc,zc))
print('X_train')
print(X_train.shape)
print(X_train)
这是X_train的打印:
X_train (4576, 3)
[[ 0.71958336 -1.12719598 0.47889958]
[ 0.71958336 -1.12719598 0.47889958]
[ 0.71958336 -1.12719598 0.34285071]
...
[ 0.55255508 -1.18817547 -1.63666023]
[ 0.55255508 -1.18817547 -1.70468466]
[ 0.55255508 -1.18817547 -1.77270909]]
这是培训的目标功能:
print('v1')
print(v1.shape)
print(v1)
其印刷品
v1
(4576,)
0 10.0
1 14.0
2 13.0
3 19.0
....
4573 39.0
4574 16.0
4575 12.0
以下是预测的样本:
x = np.column_stack((xp,
yp,
zp))
print('x')
print(x.shape)
print(x)
这是印刷品:
x (75, 3) [[-1.41421356 -1.41421356 -1.22474487] [-0.70710678 -1.41421356 -1.22474487] [ 0. -1.41421356 -1.22474487] [ 0.70710678 -1.41421356 -1.22474487] ..... [ 0.70710678 -0.70710678 -1.22474487] [ 1.41421356 -0.70710678 -1.22474487] [-1.41421356 0. -1.22474487] [-0.70710678 0. -1.22474487] [ 0. 0. -1.22474487]
这是拟合和预测
v1 = v1.ravel()
#default kernel
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
X_train, v1 = make_regression()
model = gpr(kernel=kernel, n_restarts_optimizer=9)
model.fit(X_train,v1)
#Predict v1
v1_pred = model.predict(x)
运行时出现以下错误:
文件" test.py",第189行,在测试中 v1_pred = model.predict(x)File" /usr/local/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py", 第315行,预测 K_trans = self.kernel_(X,self.X_train_)File" /usr/local/lib/python3.6/site-packages/sklearn/gaussian_process/kernels.py", 第758行,致电 return self.k1(X,Y)* self.k2(X,Y)File" /usr/local/lib/python3.6/site-packages/sklearn/gaussian_process/kernels.py", 第1215行,致电 metric =' sqeuclidean')文件" /usr/local/lib/python3.6/site-packages/scipy/spatial/distance.py", 第2373行,在cdist中 提高ValueError(' XA和XB必须具有相同的列数' ValueError:XA和XB必须具有相同的列数(即 特征维度。)
答案 0 :(得分:0)
我只是复制粘贴代码并做了一些愚蠢的事情:
X_train, v1 = make_regression()
只需将其删除即可。