为什么slim.fully_connected()
会出现此错误?
ValueError: Input 0 of layer fc1 is incompatible with the layer: : expected min_ndim=2, found ndim=1. Full shape received: [32]
我的输入是来自Tensor("batch:0", shape=(32,), dtype=float32)
tf.train.batch()
inputs, labels = tf.train.batch(
[input, label],
batch_size=batch_size,
num_threads=1,
capacity=2 * batch_size)
如果我将输入重新整形为(32,1)
,它可以正常工作。
inputs, targets = load_batch(train_dataset)
print("inputs:", inputs, "targets:", targets)
# inputs: Tensor("batch:0", shape=(32,), dtype=float32) targets: Tensor("batch:1", shape=(32,), dtype=float32)
inputs = tf.reshape(inputs, [-1,1])
targets = tf.reshape(targets, [-1,1])
slim walkthrough中的示例似乎无法在load_batch()
答案 0 :(得分:0)
tf.train.batch
期望数组像输入,因为标量很少(实际上说)。所以,你必须重塑你的输入。我认为下一个代码片段可以解决问题。
>>> import numpy as np
>>> a = np.array([1,2,3,4])
>>> a.shape
(4,)
>>> a = np.reshape(a,[4,1])
>>> a
array([[1],
[2],
[3],
[4]])
>>>