我想编写一个简单的函数来从json加载keras模型并运行预测。但是每次运行它都会出现以下错误:
ValueError: Error when checking : expected input_2 to have shape (28,) but got array with shape (1,)
下面的代码显示我已经打印出numpy数组的形状并返回(28,)
,如果我把它留作python列表,这仍然会发生。
def doit():
# load json and create model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
x = [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
z = np.array(x)
print(z.shape)
prediction = loaded_model.predict(z)
return prediction
答案 0 :(得分:1)
您的模型已初始化(并经过培训)以接收来自形状(N,28)矩阵的输入。它预计有28列。
解决此问题的方法是重塑您的单个输入行以匹配:
z = z[:, np.newaxis].T #(1,28) shape
或者:
z = z.reshape(1,-1) #reshapes to (1,whatever is in there)
z = z.reshape(-1,28) #probably better, reshapes to (amount of samples, input_dim)