我正在读取一个带有不同标签的文件到R.但是,他们更改了标签名称,因此它们现在包含运算符,R似乎不喜欢。例如(这是代码发生的地方)“Storico_G1”变为“Storico_G + 1”。
我发布了下面的代码,但错误发生在早期。我基本上在寻找一个解决方法/在创建data.frames之前更改选项卡名称。
注意我在将标签名称从“Storico_G1”更改为“Storico_G + 1”之前保留了代码,因为我认为这样更容易掌握。
有人可以指导我朝正确的方向发展吗?非常感谢提前!
library(ggplot2)
library(lubridate)
library(openxlsx)
library(reshape2)
library(dplyr)
library(scales)
Storico_G <- read.xlsx(xlsxFile = "http://www.snamretegas.it/repository/file/it/business-servizi/dati-operativi-business/dati_operativi_bilanciamento_sistema/2018/DatiOperativi_2018-IT.xlsx",sheet = "Storico_G", startRow = 1, colNames = TRUE)
Storico_G1 <- read.xlsx(xlsxFile = "http://www.snamretegas.it/repository/file/it/business-servizi/dati-operativi-business/dati_operativi_bilanciamento_sistema/2018/DatiOperativi_2018-IT.xlsx", startRow = 1, colNames = TRUE)
# Selecting Column C,E,R from Storico_G and stored in variable Storico_G_df
# Selecting Column A,P from Storico_G+1 and stored in variable Storico_G1_df
Storico_G_df <- data.frame(Storico_G$pubblicazione,Storico_G$IMMESSO, Storico_G$`RICONSEGNATO.(1)`, Storico_G$BILANCIAMENTO.RESIDUALE )
Storico_G1_df <- data.frame(Storico_G1$pubblicazione, Storico_G1$`SBILANCIAMENTO.ATTESO.DEL.SISTEMA.(SAS)`)
# Conerting pubblicazione in date format and time
Storico_G_df$pubblicazione <- ymd_h(Storico_G_df$Storico_G.pubblicazione)
Storico_G1_df$pubblicazione <- ymd_h(Storico_G1_df$Storico_G1.pubblicazione)
# Selecting on row which is having 4PM value in Storico_G+1 excel sheet tab
Storico_G1_df <- subset(Storico_G1_df, hour(Storico_G1_df$pubblicazione) == 16)
rownames(Storico_G1_df) <- 1:nrow(Storico_G1_df)
# Averaging hourly values to 1 daily data point in G excel sheet tab
Storico_G_df$Storico_G.pubblicazione <- strptime(Storico_G_df$Storico_G.pubblicazione, "%Y_%m_%d_%H")
storico_G_df_agg <- aggregate(Storico_G_df, by=list(day=format(Storico_G_df$Storico_G.pubblicazione, "%F")), FUN=mean, na.rm=TRUE)[,-2]
#cbind.fill function
cbind.fill <- function(...){
nm <- list(...)
nm <- lapply(nm, as.matrix)
n <- max(sapply(nm, nrow))
do.call(cbind, lapply(nm, function (x)
rbind(x, matrix(, n-nrow(x), ncol(x)))))
}
#cbind with both frames
G_G1_df= data.frame(cbind.fill(storico_G_df_agg,Storico_G1_df))
#keep required columns
keep=c("day", "Storico_G.IMMESSO","Storico_G..RICONSEGNATO..1..","Storico_G1..SBILANCIAMENTO.ATTESO.DEL.SISTEMA..SAS..")
#update dataframe to kept variables
G_G1_df=G_G1_df[,keep,drop=FALSE]
#Rename crazy variable names
G_G1_df <- data.frame(G_G1_df) %>%
select(day, Storico_G.IMMESSO, Storico_G..RICONSEGNATO..1.., Storico_G1..SBILANCIAMENTO.ATTESO.DEL.SISTEMA..SAS..)
names(G_G1_df) <- c("day", "Immesso","Riconsegnato", "SAS")
#Melt time series
G_G1_df=melt(G_G1_df,id.vars = "day")
#Create group variable
G_G1_df$group<- ifelse(G_G1_df$variable == "SAS", "SAS", "Immesso/Consegnato")
#plot
ggplot(G_G1_df, aes(as.Date(day),as.numeric(value),col=variable))+geom_point()+geom_line()+facet_wrap(~group,ncol=1,scales="free_y")+labs(x="Month", y="Values") +scale_x_date(labels=date_format("%m-%Y"))+geom_abline(intercept=c(-2,0,2),slope=0,data=subset(G_G1_df,group=="SAS"),lwd=0.5,lty=2)