我有json文件,如下所示:
{{"name":"jonh", "food":"tomato", "weight": 1},
{"name":"jonh", "food":"carrot", "weight": 4},
{"name":"bill", "food":"apple", "weight": 1},
{"name":"john", "food":"tomato", "weight": 2},
{"name":"bill", "food":"taco", "weight": 2}},
{"name":"bill", "food":"taco", "weight": 4}},
我需要像这样创建新的json:
{
{"name":"jonh",
"buy": [{"tomato": 3},{"carrot": 4}]
},
{"name":"bill",
"buy": [{"apple": 1},{"taco": 6}]
}
}
这是我的dataFrame
val df = Seq(
("john", "tomato", 1),
("john", "carrot", 4),
("bill", "apple", 1),
("john", "tomato", 2),
("bill", "taco", 2),
("bill", "taco", 4)
).toDF("name", "food", "weight")
如何获得具有最终结构的数据帧? groupBy 和 agg 给我错误的结构
import org.apache.spark.sql.functions._
df.groupBy("name", "food").agg(sum("weight").as("weight"))
.groupBy("name").agg(collect_list(struct("food", "weight")).as("acc"))
+----+------------------------+
|name|acc |
+----+------------------------+
|john|[[carrot,4], [tomato,3]]|
|bill|[[taco,6], [apple,1]] |
+----+------------------------+
{"name":"john","acc":[{"food":"carrot","weight":4},{"food":"tomato","weight":3}]}
{"name":"bill","acc":[{"food":"taco","weight":6},{"food":"apple","weight":1}]}
请给我正确的方向如何解决。
答案 0 :(得分:1)
您始终可以手动转换值,方法是迭代Row
,然后汇总food
- weight
对,然后将它们转换为Map
val step1 = df.groupBy("name", "food").agg(sum("weight").as("weight")).
groupBy("name").agg(collect_list(struct("food", "weight")).as("buy"))
val result = step1.map(row =>
(row.getAs[String]("name"), row.getAs[Seq[Row]]("buy").map(map =>
map.getAs[String]("food") -> map.getAs[Long]("weight")).toMap)
).toDF("name", "buy")
result.toJSON.show(false)
+---------------------------------------------+
|{"name":"john","buy":{"carrot":4,"tomato":3}}|
|{"name":"bill","buy":{"taco":6,"apple":1}} |
+---------------------------------------------+
答案 1 :(得分:0)
您可以使用替换技术
来实现所需的json格式udf方式
udf
函数适用于原始数据类型,因此replace
函数可用于替换final {food
和weight
字符串1}} as
dataframe
您应该输出import org.apache.spark.sql.functions._
def replaeUdf = udf((json: String) => json.replace("\"food\":", "").replace("\"weight\":", ""))
val temp = df.groupBy("name", "food").agg(sum("weight").as("weight"))
.groupBy("name").agg(collect_list(struct(col("food"), col("weight"))).as("buy"))
.toJSON.withColumn("value", replaeUdf(col("value")))
作为
dataframe
regex_replace函数
+-------------------------------------------------+
|value |
+-------------------------------------------------+
|{"name":"john","buy":[{"carrot",4},{"tomato",3}]}|
|{"name":"bill","buy":[{"taco",6},{"apple",1}]} |
+-------------------------------------------------+
内置函数也可用于获取所需的输出
regex_replace