使用折叠相关参数

时间:2018-02-27 20:18:49

标签: python numpy scikit-learn

问题

我正在研究一个学习排名问题,其中规范是评估点预测,但小组评估模型性能。

更具体地说,估计器输出一个连续变量(很像回归量)

> y = est.predict(X); y
array([71.42857143,  0.        , 71.42857143, ...,  0.        ,
       28.57142857,  0.        ])

但评分函数需要按查询进行聚合,即分组预测,类似于发送到groups的{​​{1}}参数,以尊重折叠分区。

GridSearchCV

包版广告

到目前为止一切顺利。在向> ltr_score(y_true, y_pred, groups=g) 0.023 提供自定义评分功能时,事情就会向南发展,我无法根据CV折叠动态改变评分函数中的GridSearchCV参数:

groups

解决此问题最不容易的方法是什么?

一个(失败的)方法

similar question中,有一条评论/建议:

  

为什么你不能在本地存储{分组列}并在必要时通过使用分离器提供的列车测试索引进行索引来利用它?

OP回答“似乎可行”。我认为这也是可行的,但无法使其发挥作用。显然,from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer ltr_scorer = make_scorer(ltr_score, groups=g) # Here's the problem, g is fixed param_grid = {...} gcv = GridSearchCV(estimator=est, groups=g, param_grid=param_grid, scoring=ltr_scorer) 将首先使用所有交叉验证拆分索引,然后才执行拆分,拟合,预测和计数。这意味着我不能(似乎)试图猜测创建当前拆分子选择的原始索引的得分时间。

为了完整起见,我的代码:

GridSearchCV

用法:

class QuerySplitScorer:
    def __init__(self, X, y, groups):
        self._X = np.array(X)
        self._y = np.array(y)
        self._groups = np.array(groups)
        self._splits = None
        self._current_split = None

    def __iter__(self):
        self._splits = iter(GroupShuffleSplit().split(self._X, self._y, self._groups))
        return self

    def __next__(self):
        self._current_split = next(self._splits)
        return self._current_split

    def get_scorer(self):
        def scorer(y_true, y_pred):
            _, test_idx = self._current_split
            return _score(
                y_true=y_true,
                y_pred=y_pred,
                groups=self._groups[test_idx]
            )

它不起作用,qss = QuerySplitScorer(X, y_true, g) gcv = GridSearchCV(estimator=est, cv=qss, scoring=qss.get_scorer(), param_grid=param_grid, verbose=1) gcv.fit(X, y_true) 在最后生成的拆分中得到修复。

1 个答案:

答案 0 :(得分:2)

据我所知,评分值是对(值,组),但估算器不应与组一起使用。让它们在包装中切割,但留给记分员。

简单的估算器包装器(可能需要一些抛光才能完全符合)

from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin, clone
from sklearn.linear_model import LogisticRegression
from sklearn.utils.estimator_checks import check_estimator
#from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer

class CutEstimator(BaseEstimator):

    def __init__(self, base_estimator):
        self.base_estimator = base_estimator

    def fit(self, X, y):
        self._base_estimator = clone(self.base_estimator)
        self._base_estimator.fit(X,y[:,0].ravel())
        return self

    def predict(self, X):
        return  self._base_estimator.predict(X)

#check_estimator(CutEstimator(LogisticRegression()))

然后我们可以使用它

def my_score(y, y_pred):

    return np.sum(y[:,1])


pagam_grid = {'base_estimator__C':[0.2,0.5]}

X=np.random.randn(30,3)
y=np.random.randint(3,size=(X.shape[0],1))
g=np.ones_like(y)

gs = GridSearchCV(CutEstimator(LogisticRegression()),pagam_grid,cv=3,
             scoring=make_scorer(my_score), return_train_score=True
            ).fit(X,np.hstack((y,g)))

print (gs.cv_results_['mean_test_score']) #10 as 30/3
print (gs.cv_results_['mean_train_score']) # 20 as 30 -30/3

输出:

 [ 10.  10.]
 [ 20.  20.]

更新1:黑客方式但估算工具没有变化:

pagam_grid = {'C':[0.2,0.5]}
X=np.random.randn(30,3)
y=np.random.randint(3,size=(X.shape[0]))
g=np.random.randint(3,size=(X.shape[0]))
cv = GroupShuffleSplit (3,random_state=100)
groups_info = {}
for a,b in cv.split(X, y, g):
    groups_info[hash(y[b].tobytes())] =g[b]
    groups_info[hash(y[a].tobytes())] =g[a]

def my_score(y, y_pred):
    global groups_info
    g = groups_info[hash(y.tobytes())]
    return np.sum(g)

gs = GridSearchCV(LogisticRegression(),pagam_grid,cv=cv, 
             scoring=make_scorer(my_score), return_train_score=True,
            ).fit(X,y,groups = g)
print (gs.cv_results_['mean_test_score']) 
print (gs.cv_results_['mean_train_score'])