当单元格是LSTMCell时,我不确定如何传递initial_state的值。我正在使用LSTMStateTuple,因为它显示在下面的代码中:
c_placeholder = tf.placeholder(tf.float32, [ None, config.state_dim], name='c_lstm')
h_placeholder = tf.placeholder(tf.float32, [ None, config.state_dim], name='h_lstm')
state_tuple = tf.nn.rnn_cell.LSTMStateTuple(c_placeholder, h_placeholder)
cell = tf.contrib.rnn.LSTMCell(num_units=config.state_dim, state_is_tuple=True, reuse=not is_training)
rnn_outs, states = tf.nn.dynamic_rnn(cell=cell, inputs=x,sequence_length=seqlen, initial_state=state_tuple, dtype= tf.float32)
但是,执行会返回此错误:
TypeError: 'Tensor' object is not iterable.
以下是dynamic_rnn
文档的链接答案 0 :(得分:0)
我以前见过同样的错误。我正在使用由tf.contrib.rnn.MultiRNNCell
制作的多层RNN单元格,我需要指定一个LSTMStateTuples
元组 - 每层一个。像
state = tuple(
[tf.nn.rnn_cell.LSTMStateTuple(c_ph[i], h_ph[i])
for i in range(nRecurrentLayers)]
)