我可以在引用this后使用Keras Callback记录每个时期的损失。有什么方法可以计算混淆矩阵并将其用作指标吗?
更新 我试图定义以下函数来返回混淆矩阵,但这仍然无效。
def con_mat(y_true,y_pred):
total_correct_true = K.sum(K.round(K.clip(y_true*y_pred,0,1)))
total_true = K.sum(y_true)
predicted_true = K.sum(K.round(y_pred))
return (total_correct_true)/(total_true+predicted_true)
我认为真阳性的逻辑是正确的,但它没有按预期工作。
答案 0 :(得分:1)
答案 1 :(得分:0)
只需将以下函数传递给model.compile函数:
from keras import backend as K
def recall_m(y_true, y_pred): # TPR
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) # P
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) # TP + FP
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def TP(y_true, y_pred):
tp = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) # TP
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
return tp/n
def TN(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
tn = K.sum(K.round(K.clip(y_neg * y_pred_neg, 0, 1))) # TN
return tn/n
def FP(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
tn = K.sum(K.round(K.clip(y_neg * y_pred, 0, 1))) # FP
return tn/n
def FN(y_true, y_pred):
y_pos = K.round(K.clip(y_true, 0, 1))
n_pos = K.sum(y_pos)
y_neg = 1 - y_pos
n_neg = K.sum(y_neg)
n = n_pos + n_neg
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
tn = K.sum(K.round(K.clip(y_true * y_pred_neg, 0, 1))) # FN
return tn/n
然后
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=lr),
metrics=['accuracy',f1_m,precision_m, recall_m, TP, TN, FP, FN])