第一次训练时代非常缓慢

时间:2018-02-27 09:58:59

标签: tensorflow deep-learning keras mnist

嗨......我在我的P3 AWS机器上运行mnist代码,与我之前的P2机器相比,初始化过程似乎很长(尽管P3> P2)

Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 265s 4ms/step - loss: 0.2674 - acc: 0.9175 - val_loss: 0.0602 - val_acc: 0.9811
Epoch 2/10
60000/60000 [==============================] - 3s 51us/step - loss: 0.0860 - acc: 0.9742 - val_loss: 0.0393 - val_acc: 0.9866
Epoch 3/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0647 - acc: 0.9808 - val_loss: 0.0338 - val_acc: 0.9884
Epoch 4/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0542 - acc: 0.9839 - val_loss: 0.0337 - val_acc: 0.9887
Epoch 5/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0453 - acc: 0.9863 - val_loss: 0.0311 - val_acc: 0.9900
Epoch 6/10
60000/60000 [==============================] - 3s 51us/step - loss: 0.0412 - acc: 0.9873 - val_loss: 0.0291 - val_acc: 0.9898
Epoch 7/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0368 - acc: 0.9891 - val_loss: 0.0300 - val_acc: 0.9901
Epoch 8/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0340 - acc: 0.9897 - val_loss: 0.0298 - val_acc: 0.9897
Epoch 9/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0320 - acc: 0.9908 - val_loss: 0.0267 - val_acc: 0.9916
Epoch 10/10
60000/60000 [==============================] - 3s 50us/step - loss: 0.0286 - acc: 0.9914 - val_loss: 0.0276 - val_acc: 0.9903
Test loss: 0.02757222411266339
Test accuracy: 0.9903

我正在使用Keras = 2.1.4 tensorflow-GPU = 1.5.0

我的keras.json文件配置如下:

{
    "floatx": "float32",
    "epsilon": 1e-07,
    "backend": "tensorflow",
    "image_data_format": "channels_last"
}

任何想法为什么会这样?

提前致谢

1 个答案:

答案 0 :(得分:0)

基于此issue

  

第一个纪元需要相同的时间,但计数器也要计入   通过构建计算图的一部分来考虑所花费的时间   处理培训(几秒钟)。这曾经在   compile步骤,但是现在懒惰地完成了一项避免   不必要的工作。