使用Dataproc(Spark)在BigQuery中加载CSV文件

时间:2018-02-26 10:45:35

标签: apache-spark google-bigquery google-cloud-storage google-cloud-dataproc

我正在尝试从GCS中的CSV文件中读取数据并将其保存在BigQuery表中。

这是我的csv文件:

1,Marc,B12,2017-03-24
2,Marc,B12,2018-01-31
3,Marc,B21,2017-03-17
4,Jeam,B12,2017-12-30
5,Jeam,B12,2017-09-02
6,Jeam,B11,2018-06-30
7,Jeam,B21,2018-03-02
8,Olivier,B20,2017-12-30

这是我的代码:

val spark = SparkSession
    .builder()
    .appName("Hyp-session-bq")
    .config("spark.master","local")
    .getOrCreate()
  val sc : SparkContext = spark.sparkContext


  val conf=sc.hadoopConfiguration

  //Input Parameters
  val projectId = conf.get("fs.gs.project.id")
  val bucket = conf.get("fs.gs.system.bucket")
  val inputTable = s"$projectId:rpc.testBig"

  //Input Configuration
  conf.set(BigQueryConfiguration.PROJECT_ID_KEY,projectId)
  conf.set(BigQueryConfiguration.GCS_BUCKET_KEY,bucket)
  BigQueryConfiguration.configureBigQueryInput(conf,inputTable)

  //Output Parameters
  val outPutTable = s"$projectId:rpc.outTestBig"

  // Temp output bucket that is deleted upon completion of job
  val outPutGcsPath = ("gs://"+bucket+"/hadoop/tmp/outTestBig")

  BigQueryOutputConfiguration.configure(conf,
    outPutTable,
    null,
    outPutGcsPath,
    BigQueryFileFormat.NEWLINE_DELIMITED_JSON,
    classOf[TextOutputFormat[_,_]])

  conf.set("mapreduce.job.outputformat.class", classOf[IndirectBigQueryOutputFormat[_,_]].getName)

  // Truncate the table before writing output to allow multiple runs.
  conf.set(BigQueryConfiguration.OUTPUT_TABLE_WRITE_DISPOSITION_KEY,"WRITE_TRUNCATE")

  val text_file = sc.textFile("gs://test_files/csvfiles/test.csv")
  val lignes = text_file.flatMap(x=>x.split(" "))
  case class schemaFile(id: Int, name: String, symbole: String, date: String)

  def parseStringWithCaseClass(str: String): schemaFile = schemaFile(
      val id = str.split(",")(0).toInt,
      val name = str.split(",")(1),
      val symbole = str.split(",")(2),
      val date = str.split(",")(3)
    )

    val result1 = lignes.map(x=>parseStringWithCaseClass(x))
    val x =result1.map(elem =>(null,new Gson().toJsonTree(elem)))
    val y = x.saveAsNewAPIHadoopDataset(conf)  

当我运行代码时,我收到此错误:

ERROR org.apache.spark.internal.io.SparkHadoopMapReduceWriter: Aborting job job_20180226083501_0008.
com.google.api.client.googleapis.json.GoogleJsonResponseException: 400 Bad Request
{
  "code" : 400,
  "errors" : [ {
    "domain" : "global",
    "message" : "Load configuration must specify at least one source URI",
    "reason" : "invalid"
  } ],
  "message" : "Load configuration must specify at least one source URI"
}
        at com.google.api.client.googleapis.json.GoogleJsonResponseException.from(GoogleJsonResponseException.java:145)
        at com.google.api.client.googleapis.services.json.AbstractGoogleJsonClientRequest.newExceptionOnError(AbstractGoogleJsonClientRequest.java:113)
        at com.google.api.client.googleapis.services.json.AbstractGoogleJsonClientRequest.newExceptionOnError(AbstractGoogleJsonClientRequest.java:40)
        at com.google.api.client.googleapis.services.AbstractGoogleClientRequest$1.interceptResponse(AbstractGoogleClientRequest.java:321)
        at com.google.api.client.http.HttpRequest.execute(HttpRequest.java:1056)
        at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:419)
        at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.executeUnparsed(AbstractGoogleClientRequest.java:352)
        at com.google.api.client.googleapis.services.AbstractGoogleClientRequest.execute(AbstractGoogleClientRequest.java:469)
        at com.google.cloud.hadoop.io.bigquery.BigQueryHelper.insertJobOrFetchDuplicate(BigQueryHelper.java:306)
        at com.google.cloud.hadoop.io.bigquery.BigQueryHelper.importFromGcs(BigQueryHelper.java:160)
        at com.google.cloud.hadoop.io.bigquery.output.IndirectBigQueryOutputCommitter.commitJob(IndirectBigQueryOutputCommitter.java:57)
        at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:128)
        at org.apache.spark.internal.io.SparkHadoopMapReduceWriter$.write(SparkHadoopMapReduceWriter.scala:101)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1085)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1085)
        at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1.apply(PairRDDFunctions.scala:1085)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
        at org.apache.spark.rdd.PairRDDFunctions.saveAsNewAPIHadoopDataset(PairRDDFunctions.scala:1084)
        at jeam.BigQueryIO$.main(BigQueryIO.scala:115)
        at jeam.BigQueryIO.main(BigQueryIO.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)  

我认为问题是关于案例类 parseStringWithCaseClass ,但我不知道如何解决这个问题。 我在配置中没有问题,因为当我尝试使用wordcount示例时,我得到了完美的结果:https://cloud.google.com/dataproc/docs/tutorials/bigquery-connector-spark-example

2 个答案:

答案 0 :(得分:1)

尝试使用Tuple4:

<form>

但是我测试了你的代码,它工作正常。

答案 1 :(得分:1)

我一直在使用自己的BigQuery表和CSV文件执行一些运行代码的测试,它对我有用,无需任何其他修改。

我看到当你将CaseClass更改为Tuple4时,正如@ jean-marc建议的那样,你的代码开始工作了,所以这是一种奇怪的行为,更考虑到他和我这两个人,您的代码实际上正在工作,无需进一步修改。错误Load configuration must specify at least one source URI通常在BigQuery中的加载作业未正确配置且未收到正确的云存储对象URL时出现。但是,如果相同的确切代码仅在更改为Tuple4且您使用的CSV文件相同且未更改(即URL有效)时有效,则可能是一个短暂的问题,可能与云存储或BigQuery,而不是Dataproc作业本身。

最后,考虑到这个问题是特定于您的情况(它已经为至少两个具有相同代码的用户工作),一旦您检查到没有与云存储对象相关的问题(权限,错误)您可能有兴趣在Public Issue Tracker中创建错误。