我的数据存在问题。我想根据"速度方程分析速度。"
我的数据如下:
df
MAC T_1 X_1 Y_1 T_2 X_2 Y_2 T_3 X_3 Y_3 T_4 X_4 Y_4 T_5 X_5 Y_5 T_6 X_6 Y_6 T_7 X_7 Y_7
ID1 1 1 1 1 1 1 2 1 2 3 1 3 3 1 3 4 1 4 5 1 5
ID2 6 2 5 6 2 5 7 3 5 7 3 5 8 4 5 9 5 5 10 5 4
ID3 1 1 1 2 1 2 3 1 3 3 1 3 4 1 4 5 1 5 6 2 5
我尝试使用我的代码计算速度:
df = pd.read_csv("data.csv") #read data
def v_2(i):
return (df.ix[x,(5+3*(i-1))]-df.ix[x,(2+3*(i-1))])**2 + (df.ix[x,(6+3*(i-1))]-df.ix[x,(3+3*(i-1))])**2
def v(i):
if (df.ix[x,(4+3*(i-1))]-df.ix[x,(1+3*(i-1))]) ==0:
return 0
else:
return math.sqrt(v_2(i)) / (df.ix[x,(4+3*(i-1))]-df.ix[x,(1+3*(i-1))])
for i in range(1,7):
for x in range(3):
v_2(i)
v(i)
print((f"v:{v(i)}",f"i:{i+1}",f"ID:{x+1}"))
目前的结果显示如下:
('v:0', 'i:2', 'ID:1')
('v:0', 'i:2', 'ID:2')
('v:1.0', 'i:2', 'ID:3')
('v:1.0', 'i:3', 'ID:1')
('v:1.0', 'i:3', 'ID:2')
('v:1.0', 'i:3', 'ID:3')
('v:1.0', 'i:4', 'ID:1')
('v:0', 'i:4', 'ID:2')
('v:0', 'i:4', 'ID:3')
('v:0', 'i:5', 'ID:1')
('v:1.0', 'i:5', 'ID:2')
('v:1.0', 'i:5', 'ID:3')
('v:1.0', 'i:6', 'ID:1')
('v:1.0', 'i:6', 'ID:2')
('v:1.0', 'i:6', 'ID:3')
('v:1.0', 'i:7', 'ID:1')
('v:1.0', 'i:7', 'ID:2')
('v:1.0', 'i:7', 'ID:3')
我的预期结果pd.Dataframe
如下:
MAC V1 V2 V3 V4 V5 V6
ID1 0 1 1 0 1 1
ID2 0 1 0 1 1 1
ID3 1 1 0 1 1 1
您是否介意帮助我如何转换数据或更好地分析速度。提前谢谢。
答案 0 :(得分:0)
在您的示例代码中,您没有在任何地方创建Dataframe ...您只是打印出来:print((f"v:{v(i)}",f"i:{i+1}",f"ID:{x+1}"))
。
一种简单的方法是使用您的数据创建一个字典(即使我不理解您要在其中存储哪些数据......)然后创建一个Dataframe:
data = {'MAC':[], 'V1':[], 'V2':[], 'V3':[], 'V4':[], 'V5':[], 'V6':[],}
for i in range(1,7):
for x in range(3):
data['MAX'].append('ID{}'.format(x+1))
data['V{}'.format(i)].append(v(i))
# do not know where to store v_2(i)
df = pandas.Dataframe(data)
我再也不明白你的最终数据框中有什么内容,但上面的提示应该足以让你解决问题。
答案 1 :(得分:0)
我尝试此代码可能接近我的预期结果:
def v_2(i):
return (df.ix[x,(5+3*(i-1))]-df.ix[x,(2+3*(i-1))])**2 + (df.ix[x,(6+3*(i-1))]-df.ix[x,(3+3*(i-1))])**2
def v(i):
if (df.ix[x,(4+3*(i-1))]-df.ix[x,(1+3*(i-1))]) ==0:
return 0
else:
return math.sqrt(v_2(i)) / (df.ix[x,(4+3*(i-1))]-df.ix[x,(1+3*(i-1))])
df = pd.read_csv("data.csv")
df_result = pd.DataFrame()
for i in range(1,int((len(df.columns)-1)/3)):
v_result = list()
for x in range(len(df.index)):
v_2(i)
v(i)
v_result.append(v(i))
df_result[i]=v_result
df_result.columns = ['V_{}'.format(int(i)+1) for i in df_result.columns]
df_result.index = ['ID_{}'.format(int(i)+1) for i in df_result.index]
df_result