我希望在某些计算中有效地使用DataFrame的MultiIndex中的值。例如,从:
开始np.random.seed(456)
j = [(a, b) for a in ['A','B','C'] for b in random.sample(pd.date_range('2017-01-01', periods=50, freq='W').tolist(), 5)]
i = pd.MultiIndex.from_tuples(j, names=['Name','Num'])
df = pd.DataFrame(np.random.randn(15), i, columns=['Vals'])
df['SmallestNum'] = df.reset_index(level=1).groupby('Name')['Num'].transform('min').values
假设我想计算一个新列Diff = Num - SmallestNum
。一个有效的,但我认为,kludgy的方法是将我想引用的索引级别复制到一个真正的列,然后做差异:
df['NumCol'] = df.index.get_level_values(1)
df['Diff'] = df['NumCol'] - df['SmallestNum']
但是如果我这样做的话,我觉得我仍然不理解使用DataFrames的正确方法。我认为“正确”的解决方案看起来像以下任何一种,它不会创建和存储索引值的完整副本:
df['Diff'] = df.transform(lambda x: x.index.get_level_values(1) - x['SmallestNum'])
df['Diff'] = df.reset_index(level=1).apply(lambda x: x['Num'] - x['SmallestNum'])
...但不仅这些表达式都不起作用*,而且我的理解是像.transform
或.apply
这样的DataFrame操作必然明显慢于显式操作的那些操作“矢量化的“行引用。
那么在这个例子中为新Diff
列编写计算的“正确和有效”方法是什么?
* 更新:这个问题由于事实(可能是错误)使得索引级别1值不唯一,这导致公式在索引值唯一失败时工作{{ 1}}。幸运的是,jezrael's answer包含的解决方法似乎与显式矢量化计算一样有效。
答案 0 :(得分:1)
我认为你需要简单地减去:
df <- structure(list(char = c("a", "b", "b"), num = c(1.1, 2.2, 2.2
), int = c(1L, 2L, 2L)), .Names = c("char", "num", "int"), row.names = c(NA,
-3L), class = c("tbl_df", "tbl", "data.frame"))
编辑:对于第二级工作中的非唯一df['Diff'] = df.index.get_level_values(1) - df['SmallestNum']
print (df)
Vals SmallestNum Diff
Name Num
A 28 1.180140 28 0
44 0.984257 28 16
90 1.835646 28 62
43 -1.886823 28 15
29 0.424763 28 1
B 80 -0.433105 38 42
61 -0.166838 38 23
46 0.754634 38 8
38 1.966975 38 0
93 0.200671 38 55
C 40 0.742752 12 28
82 -1.264271 12 70
12 -0.112787 12 0
78 0.667358 12 66
70 0.357900 12 58
,减去由values
创建的numpy数组:
DatetimeIndex
另一种解决方案:
np.random.seed(456)
a = pd.date_range('2015-01-01', periods=6).values
j = [['A'] * 5 + ['B'] * 5 + ['C'] * 5, pd.to_datetime(np.random.choice(a, size=15))]
i = pd.MultiIndex.from_arrays(j, names=['Name','Num'])
df = pd.DataFrame(np.random.randn(15), i, columns=['Vals'])
df['SmallestNum'] = df.reset_index(level=1).groupby('Name')['Num'].transform('min').values
df['Diff'] = df.index.get_level_values(1).values - df['SmallestNum'].values
print (df)
Vals SmallestNum Diff
Name Num
A 2015-01-04 -1.842419 2015-01-02 2 days
2015-01-06 -0.786788 2015-01-02 4 days
2015-01-04 1.180140 2015-01-02 2 days
2015-01-02 0.984257 2015-01-02 0 days
2015-01-03 1.835646 2015-01-02 1 days
B 2015-01-05 -1.886823 2015-01-03 2 days
2015-01-03 0.424763 2015-01-03 0 days
2015-01-05 -0.433105 2015-01-03 2 days
2015-01-06 -0.166838 2015-01-03 3 days
2015-01-05 0.754634 2015-01-03 2 days
C 2015-01-06 1.966975 2015-01-02 4 days
2015-01-06 0.200671 2015-01-02 4 days
2015-01-05 0.742752 2015-01-02 3 days
2015-01-02 -1.264271 2015-01-02 0 days
2015-01-04 -0.112787 2015-01-02 2 days