我在每个时代保存的模型在精度方面超过了上一个时代。但是当我加载模型时,它不会从保存的模型点恢复。代码如下:
filepath = "weights-improvement-{epoch:02d}-{loss:.2f}.hdf5"
callbacks = ModelCheckpoint(filepath, monitor='loss', verbose=0, save_best_only=True, save_weights_only=True,
mode='min')
model = load_model(current_dir + '\\' + 'weights-improvement-45-0.67.hdf5')
#model = load_model(current_dir + '\\' + 'weights-improvement-83-0.01.hdf5')
for j in range(n_repeats):
csv_logger = CSVLogger('log' + str(i) + '_' + str(j) + '.csv', append=True, separator=';')
print('training on cell array size' + str(cell_size_array[i]) + 'repeat of ' + str(j))
history = model.fit_generator(get_input_output_spect_yeild(param_dict['dat_dir_train'],meanAbs,stdAbs,meanPhase,stdPhase ),
validation_data=get_input_output_spect_yeild(param_dict['dat_dir_validation'],meanAbs,stdAbs,meanPhase,stdPhase),
validation_steps=val_per_ep, steps_per_epoch=step_per_ep, epochs=num_epochs,
verbose=1, callbacks=[csv_logger, callbacks])
答案 0 :(得分:0)
在使用model.fit_generator之前,您必须使用保存的权重加载模型。 model.load_weights('最佳体重的路径')