如何使用python中的csv文件中的groupby进行求和操作,但是从该组中排除一些非数字数据?例如。我有csv文件:
id | filename | #Line_Changed
-----------------------------------------------
1 | analyze/dir_list.txt | 16
2 | metrics/metrics1.csv | 11
3 | metrics/metrics2.csv | 15
4 | analyze/dir_list.txt | =>
5 | metrics/metrics1.csv | 11
6 | metrics/metrics2.csv | bin
7 | metrics/metrics2.csv | 4
8 | analyze/dir_list.txt | 4
我希望通过列Filename进行分组,并且仅计算仅包含数字数据的行的总和,并排除非数字数据。结果应如下所示:
filename | SUM #Line_Changed
-----------------------------------------------
analyze/dir_list.txt | 20
metrics/metrics1.csv | 22
metrics/metrics2.csv | 19
到目前为止我做了什么:
df = pd.read_csv('diffhistogram.csv')
by_fn = df.groupby('filename')
mydata = {}
for name in ['#line_changed']:
mydata['SUM ' + name] = by_fn[name].sum()
output = pd.DataFrame(mydata)
print(output)
但输出假定“#line_changed”列中的数据为字符串:
filename | SUM #Line_Changed
-----------------------------------------------
analyze/dir_list.txt | 16=>4
metrics/metrics1.csv | 1111
metrics/metrics2.csv | 15bin4
有没有办法可以指定要包含在sum()操作中的数字数据和要排除的非数字数据?
答案 0 :(得分:3)
我认为您需要to_numeric
参数errors='coerce'
才能将非数字转换为NaN
s,然后groupby
+ sum
省略此行:
df = (pd.to_numeric(df['#Line_Changed'], errors='coerce')
.groupby(df['filename'])
.sum()
.to_frame()
.add_prefix('SUM ')
.reset_index())
print (df)
filename SUM #Line_Changed
0 analyze/dir_list.txt 20.0
1 metrics/metrics1.csv 22.0
2 metrics/metrics2.csv 19.0
或指定用于groupby
的新列:
df['SUM #Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
df = df.groupby('filename', as_index=False)['SUM #Line_Changed'].sum()
print (df)
filename SUM #Line_Changed
0 analyze/dir_list.txt 20.0
1 metrics/metrics1.csv 22.0
2 metrics/metrics2.csv 19.0
<强>详细强>:
df['SUM #Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
print (df)
id filename #Line_Changed SUM #Line_Changed
0 1 analyze/dir_list.txt 16 16.0
1 2 metrics/metrics1.csv 11 11.0
2 3 metrics/metrics2.csv 15 15.0
3 4 analyze/dir_list.txt => NaN
4 5 metrics/metrics1.csv 11 11.0
5 6 metrics/metrics2.csv bin NaN
6 7 metrics/metrics2.csv 4 4.0
7 8 analyze/dir_list.txt 4 4.0
编辑:
如果要删除原始DataFrame
中的非数字行:
df['#Line_Changed'] = pd.to_numeric(df['#Line_Changed'], errors='coerce')
df = df.dropna(subset=['#Line_Changed'])
print (df)
id filename #Line_Changed
0 1 analyze/dir_list.txt 16.0
1 2 metrics/metrics1.csv 11.0
2 3 metrics/metrics2.csv 15.0
4 5 metrics/metrics1.csv 11.0
6 7 metrics/metrics2.csv 4.0
7 8 analyze/dir_list.txt 4.0