CountVectorizer引发短词

时间:2018-02-24 11:31:08

标签: python machine-learning scikit-learn valueerror countvectorizer

有人试图解释我为什么当我尝试fit_transform任何短字时,CountVectorizer会引发这个错误?即使我使用stopwords = None我仍然会得到相同的错误。 这是代码

from sklearn.feature_extraction.text import CountVectorizer

text = ['don\'t know when I shall return to the continuation of my scientific work. At the moment I can do absolutely nothing with it, and limit myself to the most necessary duty of my lectures; how much happier I would be to be scientifically active, if only I had the necessary mental freshness.']

cv = CountVectorizer(stop_words=None).fit(text)

并按预期工作。然后,如果我尝试fit_transform与另一个文本

cv.fit_transform(['q'])

,引发的错误是

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-3-acbd560df1a2> in <module>()
----> 1 cv.fit_transform(['q'])

~/.local/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in fit_transform(self, raw_documents, y)
    867 
    868         vocabulary, X = self._count_vocab(raw_documents,
--> 869                                           self.fixed_vocabulary_)
    870 
    871         if self.binary:

~/.local/lib/python3.6/site-packages/sklearn/feature_extraction/text.py in _count_vocab(self, raw_documents, fixed_vocab)
    809             vocabulary = dict(vocabulary)
    810             if not vocabulary:
--> 811                 raise ValueError("empty vocabulary; perhaps the documents only"
    812                                  " contain stop words")
    813 

ValueError: empty vocabulary; perhaps the documents only contain stop words

我读了一些关于这个错误的话题,因为它看起来确实经常出现错误CV提升,但我发现的所有内容都涵盖了文本真的只包含停用词的情况。我真的无法弄清楚我的问题是什么,所以如果我得到任何帮助,我会非常感激!

1 个答案:

答案 0 :(得分:3)

默认情况下,

CountVectorizer(token_pattern='(?u)\\b\\w\\w+\\b')仅标记包含2个以上字符的单词(标记)

您可以更改此默认行为:

vect = CountVectorizer(token_pattern='(?u)\\b\\w+\\b')

测试:

In [29]: vect.fit_transform(['q'])
Out[29]:
<1x1 sparse matrix of type '<class 'numpy.int64'>'
        with 1 stored elements in Compressed Sparse Row format>

In [30]: vect.get_feature_names()
Out[30]: ['q']