我做了一个向量,但我不知道如何选择变量来总结一定数量。
以下是代码:
#include <iostream>
#include <vector>
int main(int argc, const char * argv[]) {
std::vector<int> numbers;
int en;
int boy;
while((std::cout << "EN giriniz: ") && (std::cin >> en))
{
numbers.push_back(en); //numbers will resize itself automatically
while((std::cout << "BOY giriniz: ") && (std::cin >> boy))
{
numbers.push_back(boy); //numbers will resize itself automatically
break;
}
}
for (std::vector<int>::const_iterator i = numbers.begin(); i != numbers.end(); ++i)
std::cout << *i << ' ';
//...
}
答案 0 :(得分:1)
编辑:这是我以前的答案之一。那时我当时并不好,现在我知道这个问题有一个更简单,更快,更少耗费内存的解决方案。如果我们在仅存储最接近的总和的表中自下而上计算DP,我们可以稍后使用我们计算的表值重建其中一个数字子集。
这称为binary knapsack problem。在您的情况下,对象的权重是其值(数字)。
如果你想要一个在O(NW)中运行的快速解决方案,其中N是数字的数量而W是目标值(可以在几分之一秒内完成10,000个数字的问题),请使用维基百科中的动态编程链接。其他一些算法也在那里描述。
对于在O(N2 ^ N)中运行的强力解决方案,基本上,尝试所有可能的数字组合来挑选并记住最佳数字。您可以使用recursion(向下滚动到递归)或者有一个整数的位操作来执行此操作,其中每个位表示是否在集合中包含数字,并且只需递增它。
如果您无法实现它,请参阅我的快速动态编程算法代码:
#include <iostream>
#include <set>
#include <vector>
#include <map>
#include <utility>
using namespace std;
int N, W; //N = number of numbers, W = target sum
vector<int> numbers; //stores the set of numbers
pair<int, multiset<int>> calc(int i, int j) //returns closest sum and best subset of the first i numbers for the target value j
{
static map<pair<int, int>, pair<int, multiset<int>>> dp; //stores results to avoid repeated calculations
pair<int, int> p(i, j); //pair for convenience
if(i == 0) //base case
{
return make_pair(0, multiset<int>(
{}));
}
auto findResult = dp.find(p);
if(findResult != dp.end()) //check if already calculated
{
return findResult->second;
}
auto temp1 = calc(i - 1, j); //compute result if not using number
if(numbers[i - 1] > j) //if current number is too big
{
return temp1;
}
auto temp2 = calc(i - 1, j - numbers[i - 1]); //compute result if using number
temp2.first += numbers[i - 1];
temp2.second.insert(numbers[i - 1]);
pair<int, multiset<int>> result;
if(temp1.first != temp2.first) //compare results and choose best
{
result = temp1.first > temp2.first ? temp1 : temp2;
}
else
{
result = temp1.second.size() < temp2.second.size() ? temp1 : temp2;
}
dp.insert(make_pair(p, result));
return result;
}
int main()
{
cout << "Enter the number of numbers: ";
cin >> N;
cout << "Enter target sum: ";
cin >> W;
numbers.reserve(N); //avoid extra reallocations
cout << "Enter the numbers: ";
for(int i = 0; i < N; i++) //input loop
{
int temp;
cin >> temp;
numbers.push_back(temp);
}
pair<int, multiset<int>> result = calc(N, W); //calculate
//output below
cout << "The best possible sum is " << result.first << ", obtained using the set of numbers {";
if(result.second.size() > 0)
{
cout << *result.second.begin();
for(auto i = ++result.second.begin(); i != result.second.end(); i++)
{
cout << ", " << *i;
}
}
cout << "}.\n";
}
这是带位操作的简单蛮力(请注意,由于用于存储状态的32位整数,此解决方案只能计算少于32项的解决方案。再花费很长时间才能运行反正):
#include <iostream>
#include <set>
#include <vector>
using namespace std;
int N, W; //N = number of numbers, W = target sum
vector<int> numbers; //stores the set of numbers
int main()
{
cout << "Enter the number of numbers: ";
cin >> N;
cout << "Enter target sum: ";
cin >> W;
numbers.reserve(N); //avoid extra reallocations
cout << "Enter the numbers: ";
for(int i = 0; i < N; i++) //input loop
{
int temp;
cin >> temp;
numbers.push_back(temp);
}
int bestSum = -1, bestSolution; //stores current best solution
for(unsigned int current = 0; current < (1 << N); current++) //current represents current set
{
int sum = 0;
for(int i = 0; i < N; i++) //compute sum
{
if(current & (1 << i))
{
sum += numbers[i];
}
}
if(sum <= W && sum > bestSum) //update best
{
bestSum = sum;
bestSolution = current;
}
}
multiset<int> result; //make result set for output
int resultSum = 0;
for(int i = 0; i < N; i++)
{
if(bestSolution & (1 << i))
{
result.insert(numbers[i]);
resultSum += numbers[i];
}
}
//output below
cout << "The best possible sum is " << resultSum << ", obtained using the set of numbers {";
if(result.size() > 0)
{
cout << *result.begin();
for(auto i = ++result.begin(); i != result.end(); i++)
{
cout << ", " << *i;
}
}
cout << "}.\n";
}
一种解决方案,输出所有数字组合,其总和等于最大可能总和不大于目标值并包含尽可能少的数字:
#include <iostream>
#include <set>
#include <vector>
#include <map>
#include <utility>
using namespace std;
int N, W; //N = number of numbers, W = target sum
vector<int> numbers; //stores the set of numbers
pair<int, set<multiset<int>>> calc(int i, int j) //returns closest sum and best subset of the first i numbers for the target value j
{
static map<pair<int, int>, pair<int, set<multiset<int>>>> dp; //stores results to avoid repeated calculations
pair<int, int> p(i, j); //pair for convenience
if(i == 0) //base case
{
set<multiset<int>> temp;
temp.emplace();
return make_pair(0, temp);
}
auto findResult = dp.find(p);
if(findResult != dp.end()) //check if already calculated
{
return findResult->second;
}
auto temp1 = calc(i - 1, j); //compute result if not using number
if(numbers[i - 1] > j) //if current number is too big
{
return temp1;
}
pair<int, set<multiset<int>>> temp2 = calc(i - 1, j - numbers[i - 1]), newtemp2; //compute result if using number
newtemp2.first = temp2.first + numbers[i - 1];
for(const auto k : temp2.second)
{
multiset<int> temp = k;
temp.insert(numbers[i - 1]);
newtemp2.second.insert(temp);
}
pair<int, set<multiset<int>>> *result;
if(temp1.first != newtemp2.first) //compare results and choose best
{
result = temp1.first > newtemp2.first ? &temp1 : &newtemp2;
}
else if(temp1.second.begin()->size() != newtemp2.second.begin()->size())
{
result =
temp1.second.begin()->size() < newtemp2.second.begin()->size() ? &temp1 : &newtemp2;
}
else
{
temp1.second.insert(newtemp2.second.begin(), newtemp2.second.end());
result = &temp1;
}
dp.insert(make_pair(p, *result));
return *result;
}
int main()
{
cout << "Enter the number of numbers: ";
cin >> N;
cout << "Enter target sum: ";
cin >> W;
numbers.reserve(N); //avoid extra reallocations
cout << "Enter the numbers: ";
for(int i = 0; i < N; i++) //input loop
{
int temp;
cin >> temp;
numbers.push_back(temp);
}
pair<int, set<multiset<int>>> result = calc(N, W); //calculate
//output below
cout << "The best possible sum is " << result.first << ", which can be obtained using a set of "
<< result.second.begin()->size() << " numbers " << result.second.size()
<< " different ways:\n";
for(const auto &i : result.second)
{
cout << '{';
if(i.size() > 0)
{
cout << *i.begin();
for(auto j = ++i.begin(); j != i.end(); ++j)
{
cout << ", " << *j;
}
}
cout << "}\n";
}
}
答案 1 :(得分:0)
基本上你需要做
n0 + n1 + n2 + n3 + n4 + n5
直到你获胜或者是>目标号码
然后做
n0 + n2 + n3 + ....
没有运气
n0 + n3 + n4 + n5 + n6...
当您用
重新开始列表重启时n1 + n2 + n3
然后
n1 + n3 + n4
等
这是'简单'又名'蛮力'的方法。其他人会有许多建议的技巧,以加快速度