我尝试根据Tensorflow文档提供<div class="mySlides fade">
<a class="prev" onclick="plusSlides(-1)">❮</a>
<a class="next" onclick="plusSlides(1)">❯</a>
</div>
<div class="wrapper">
<div class="imagelandscape"><img src="http://image.JPG" style= " display: block; max-height:auto; width:100%; "></div>
</div>
输入参数但仍然出现此错误:
ConvLSTMCell
我的代码是:
InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [10,64,64,1] vs. shape[1] = [1,64,64,16]
[[Node: rnn/while/rnn/Encoder_1/concat = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](rnn/while/TensorArrayReadV3, rnn/while/Switch_4:1, rnn/while/rnn/Encoder_1/split/split_dim)]]
答案 0 :(得分:1)
试试这个:
num_channels = 1
img_size = 64
filter_size1 = 5
num_filters1 = 16
x = tf.placeholder(tf.float32, shape=[None,None,img_size,img_size,num_channels],
name='x')
InputShape = [img_size, img_size, num_channels]
encoder_1_KernelShape = [filter_size1, filter_size1]
rnn_cell = ConvLSTMCell(2, InputShape, num_filters1, encoder_1_KernelShape,
use_bias=True, forget_bias=1.0, name='Encoder_1')
initial_state = rnn_cell.zero_state(10, dtype=tf.float32)
encoder_1_outputs, encoder_1_state = tf.nn.dynamic_rnn(rnn_cell, x,
initial_state=initial_state,
dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
x_train = np.zeros([10, 1, img_size, img_size, num_channels], dtype=np.float32)
sess.run(encoder_1_outputs, feed_dict={x: x_train})
请注意,x
中的第一个维度是batch_size
(示例中等于10),第二个维度是sequence_num
(等于1)。