我正在尝试从下面提到的字典中创建以下数据框。有没有有效的解决方案?
data_dict = {
'Total_Amount' : '150.00',
'LinkAPI' : [{"ConfidenceScore":4},{"ConfidenceScore":9}],
'RecordID' : 5687,
'ClientId' : 45,
'Customer_Number' : ["HDMO70232"],
'RowNumber' : 0,
'Invoice_Number' : '',
'Customer_Name' : 'HD MOTORCYCLES SIS/SVC'
}
数据框中的行数应该等于' LinkAPI'列表中的项目数。上述数据的数据框应如下所示。
ClientId Customer_Name Customer_Number Invoice_Number LinkAPI RecordID RowNumber Total_Amount
0 45 HD MOTORCYCLES SIS/SVC [HDMO70232] {'ConfidenceScore': 4} 5687 0 150.00
1 45 HD MOTORCYCLES SIS/SVC [HDMO70232] {'ConfidenceScore': 9} 5687 0 150.00
我尝试了两种解决方案来实现这一点。我希望有一种更好的方法来创建数据帧。 溶液1:
items_number = len(data_dict['LinkAPI'])
df_dict = {k : [data_dict[k] for _ in range(items_number)] if k != 'LinkAPI' else data_dict[k]
for k in data_dict.keys()}
df = pd.DataFrame(df_dict)
溶液-2:
LinkAPI = data_dict["LinkAPI"]
df_new = pd.DataFrame(columns=list(df)) # list(df) is ['ClientId','Customer_Name', 'Customer_Number',
# 'Invoice_Number', 'LinkAPI','RecordID', 'RowNumber', 'Total_Amount']
i=0
for conf in LinkAPI:
df_new.loc[i] = [data_dict["Total_Amount"], conf, data_dict["RecordID"], data_dict["ClientId"], data_dict["Customer_Number"],
data_dict["RowNumber"], data_dict["Invoice_Number"], data_dict["Customer_Name"]]
i+=1
答案 0 :(得分:3)
from pandas.io.json import json_normalize
cols = ['Total_Amount','RecordID','ClientId','Customer_Number',
'RowNumber','Invoice_Number','Customer_Name']
df = json_normalize(data, 'LinkAPI', cols)
#data borrowed from HYRY
print (df)
ConfidenceScore test Total_Amount Invoice_Number RowNumber \
0 4.0 NaN 150.00 0
1 9.0 NaN 150.00 0
2 8.0 NaN 1500.00 1
3 10.0 NaN 1500.00 1
4 20.0 NaN 1500.00 1
5 NaN 2.0 1500.00 1
Customer_Number ClientId Customer_Name RecordID
0 HDMO70232 45 HD MOTORCYCLES SIS/SVC 5687
1 HDMO70232 45 HD MOTORCYCLES SIS/SVC 5687
2 HDMO70232 415 HD MOTORCYCLES SIS/SVC 56287
3 HDMO70232 415 HD MOTORCYCLES SIS/SVC 56287
4 HDMO70232 415 HD MOTORCYCLES SIS/SVC 56287
5 HDMO70232 415 HD MOTORCYCLES SIS/SVC 56287
答案 1 :(得分:1)
我将您的数据更改为dict列表:
data = [
{
'Total_Amount' : '150.00',
'LinkAPI' : [{"ConfidenceScore":4},{"ConfidenceScore":9}],
'RecordID' : 5687,
'ClientId' : 45,
'Customer_Number' : ["HDMO70232"],
'RowNumber' : 0,
'Invoice_Number' : '',
'Customer_Name' : 'HD MOTORCYCLES SIS/SVC'
},
{
'Total_Amount' : '1500.00',
'LinkAPI' : [{"ConfidenceScore":8},{"ConfidenceScore":10}, {"ConfidenceScore":20}, {"test":2}],
'RecordID' : 56287,
'ClientId' : 415,
'Customer_Number' : ["HDMO70232"],
'RowNumber' : 1,
'Invoice_Number' : '',
'Customer_Name' : 'HD MOTORCYCLES SIS/SVC'
},
]
df = pd.DataFrame(data)
df2 = pd.DataFrame(np.concatenate(df.LinkAPI).tolist(),
index=np.repeat(df.index, df.LinkAPI.str.len().astype(int)))
df.drop("LinkAPI", axis=1).join(df2)
输出:
ClientId Customer_Name Customer_Number Invoice_Number RecordID RowNumber Total_Amount ConfidenceScore test
0 45 HD MOTORCYCLES SIS/SVC [HDMO70232] 5687 0 150.00 4.0 NaN
0 45 HD MOTORCYCLES SIS/SVC [HDMO70232] 5687 0 150.00 9.0 NaN
1 415 HD MOTORCYCLES SIS/SVC [HDMO70232] 56287 1 1500.00 8.0 NaN
1 415 HD MOTORCYCLES SIS/SVC [HDMO70232] 56287 1 1500.00 10.0 NaN
1 415 HD MOTORCYCLES SIS/SVC [HDMO70232] 56287 1 1500.00 20.0 NaN
1 415 HD MOTORCYCLES SIS/SVC [HDMO70232] 56287 1 1500.00 NaN 2.0
答案 2 :(得分:0)
我不知道它是否是一个选项,但是如果你可以改变你的词典以获得所有条目的等长列表(例如只重复data_dict
中当前的值,你可以使用{ {1}}。在您的情况下,字典的每个条目的长度必须等于2,因为这是字典中最长的条目(pd.DataFrame(data_dict)
:
LinkAPI)
它为您提供以下数据框:
import pandas as pd
pd.set_option("display.width", 300) # You can ignore this
data_dict = {
'Total_Amount' : '150.00',
'LinkAPI' : [{"ConfidenceScore":4},{"ConfidenceScore":9}],
'RecordID' : [5687] * 2,
'ClientId' : [45] * 2,
'Customer_Number' : ["HDMO70232"] * 2,
'RowNumber' : [0] * 2,
'Invoice_Number' : [''] * 2,
'Customer_Name' : ['HD MOTORCYCLES SIS/SVC'] * 2
}
df = pd.DataFrame(data_dict)
print df
修改强>
为了澄清,要将字典读取到数据帧,pandas要求每个条目(字典中的键将是数据帧中的列)具有相同的长度。否则,它将抛出 ClientId Customer_Name Customer_Number Invoice_Number LinkAPI RecordID RowNumber Total_Amount
0 45 HD MOTORCYCLES SIS/SVC HDMO70232 {u'ConfidenceScore': 4} 5687 0 150.00
1 45 HD MOTORCYCLES SIS/SVC HDMO70232 {u'ConfidenceScore': 9} 5687 0 150.00
:
ValueError