我有下面你可以看到的JSON,我想要对两个对象的值求和,但是当我进行聚合时,它会返回0.这里你可以看到我使用的查询;真的第一行我只用它来确保路径有效,而且确实如此。另一方面,当我在聚合查询中使用此路径时,它会为我提供" ID"和" COUNT"正确的价值观,但" SUM"当它必须是3600时总是0。任何想法?
db.getCollection('TEST').find({"prices.year.months.day.csv.price.valPrice":1800})
db.TEST.aggregate([
{ $match: {"location.cp":"20830"}},
{$group:{_id:"20830",total:{$sum:"$prices.year.months.day.csv.price.valPrice"}, count: { $sum: 1 }
}}])
这是JSON:
{
"_id" : "20830:cas:S:3639",
"lodgtype" : "Casa",
"lodg" : "Motrico: country holiday home - San sebastian",
"webid" : "6107939",
"location" : {
"thcod" : "20",
"cp" : "20830",
"th" : "Gipuzkoa",
"geometry" : {
"type" : "Point",
"coordinates" : [
43.31706238,
-2.40293598
]
}
},
"prices" : {
"year" : [
{
"valYear" : "2018",
"months" : [
{
"valMonth" : "02",
"day" : [
{
"valDay" : "13",
"csv" : [
{
"valCsv" : "20180205210908_223",
"price" : [
{
"valPrice" : 1800.0
}
]
}
]
}
]
}
]
}
]
},
"reg" : {
"created" : "20180213",
"updated" : "20180213",
"viewed" : "20180213"
}
},{
"_id" : "TEST20830:cas:S:3639",
"lodgtype" : "Casa",
"lodg" : "TESTMotrico: country holiday home - San sebastian",
"webid" : "6107930",
"location" : {
"thcod" : "20",
"cp" : "20830",
"th" : "Gipuzkoa",
"geometry" : {
"type" : "Point",
"coordinates" : [
43.31706238,
-2.40293598
]
}
},
"prices" : {
"year" : [
{
"valYear" : "2018",
"months" : [
{
"valMonth" : "02",
"day" : [
{
"valDay" : "13",
"csv" : [
{
"valCsv" : "20180205210908_223",
"price" : [
{
"valPrice" : 1800.0
}
]
}
]
}
]
}
]
}
]
},
"reg" : {
"created" : "20180213",
"updated" : "20180213",
"viewed" : "20180213"
}
}
答案 0 :(得分:3)
由于您已经深度嵌套了数组,因此您需要展开以展平为文档结构。要计算您$match
后$push
与$$ROOT
{{}}}之后使用额外群组的匹配数量,以保留匹配数据。
db.TEST.aggregate([
{"$match":{"location.cp":"20830"}},
{"$group":{
"_id":"20830",
"data":{"$push":"$$ROOT"},
"count":{"$sum":1}
}},
{"$unwind":"$data.prices.year"},
{"$unwind":"$data.prices.year"},
{"$unwind":"$data.prices.year.months"},
{"$unwind":"$data.prices.year.months.day"},
{"$unwind":"$data.prices.year.months.day.csv"},
{"$unwind":"$data.prices.year.months.day.csv.price"},
{"$group":{
"_id":"20830",
"total":{"$sum":"$prices.year.months.day.csv.price.valPrice"},
"count":{"$first":"$count"}
}}
])