假设我有一个类似于此文件的CSV文件,只有更大的文件:
Cost center number,Month,Amount 1,Amount 2
1234,1,755,9356
1234,2,6758,786654
1234,1,-954,31234
1234,2,2345,778
1234,5,680,986
5678,6,876,456
5678,6,1426,321
5678,5,823,164
5678,7,4387,3485
91011,11,1582,714
91011,12,778,963
91011,10,28,852
91011,12,23475,147
我想模仿Excel数据透视表功能,并按成本中心,月份和两个金额的总和对数据进行分组,因此输出如下所示:
Cost center number,Month,Amount 1 + Amount 2
1234,1,Amount 1 value + Amount 2 value
1234,2,Amount 1 value + Amount 2 value
1234,5,Amount 1 value + Amount 2 value
5678,6,Amount 1 value + Amount 2 value
5678,5,Amount 1 value + Amount 2 value
5678,7,Amount 1 value + Amount 2 value
91011,11,Amount 1 value + Amount 2 value
91011,10,Amount 1 value + Amount 2 value
91011,12,Amount 1 value + Amount 2 value
到目前为止,我已经尝试遍历每一行并为我感兴趣的数据创建列表,我不知道从那里去哪里:
import csv
filename = 'APAC.csv'
with open(filename) as f:
reader = csv.reader(f)
headers = next(reader)
for header in enumerate(headers):
print(header)
cost_centers = []
months = []
amounts1 = []
amounts2 = []
for row in reader:
cost_centers.append(row[1])
months.append(row[2)]
amounts1.append(row[3])
amounts2.append(row[4])
我知道Pandas有'group by'和'agg'的选项,但这对我来说是列表和词典的练习(不过我对不同的方法持开放态度),我宁愿留在本土Python库。
答案 0 :(得分:2)
使用groupby
汇总sum
,然后如果需要汇总所有列,请sum
添加axis=1
:
#create DataFrame
df = pd.read_csv('APAC.csv')
df = df.groupby(['Cost center number','Month']).sum().sum(axis=1).reset_index(name='sum')
print (df)
Cost center number Month sum
0 1234 1 40391
1 1234 2 796535
2 1234 5 1666
3 5678 5 987
4 5678 6 3079
5 5678 7 7872
6 91011 10 880
7 91011 11 2296
8 91011 12 25363
<强>详细强>:
print (df.groupby(['Cost center number','Month']).sum())
Amount 1 Amount 2
Cost center number Month
1234 1 -199 40590
2 9103 787432
5 680 986
5678 5 823 164
6 2302 777
7 4387 3485
91011 10 28 852
11 1582 714
12 24253 1110
如果想要一个班轮首先回答add
,那么groupby
按列和最后汇总sum
:
df = (
df['Amount 1'].add(df['Amount 2'])
.groupby([df['Cost center number'], df['Month']])
.sum()
.reset_index(name='sum')
)
print (df)
Cost center number Month sum
0 1234 1 40391
1 1234 2 796535
2 1234 5 1666
3 5678 5 987
4 5678 6 3079
5 5678 7 7872
6 91011 10 880
7 91011 11 2296
8 91011 12 25363
答案 1 :(得分:1)
这可以使用Python内置的defaultdict
来完成,以帮助为每个cost center
和month
创建一个字典条目:
from collections import defaultdict
import csv
filename = 'APAC.csv'
totals = defaultdict(lambda : defaultdict(int))
with open(filename, 'r', newline='') as f_input:
csv_input = csv.reader(f_input)
header = next(csv_input)
for cost_center, month, amount_1, amount_2 in csv_input:
totals[cost_center][month] += int(amount_1) + int(amount_2)
with open('output.csv', 'w', newline='') as f_output:
csv_output = csv.writer(f_output)
csv_output.writerow(['Cost center number', 'Month', 'Amount 1 + Amount 2'])
for cost_center, month_data in sorted(totals.items()):
for month, total in sorted(month_data.items()):
csv_output.writerow([cost_center, month, total])
哪个会给你一个output.csv
文件,其中包含:
Cost center number,Month,Amount 1 + Amount 2
1234,1,40391
1234,2,796535
1234,5,1666
5678,5,987
5678,6,3079
5678,7,7872
91011,10,880
91011,11,2296
91011,12,25363
通过使用defaultdict
,可以更轻松地添加条目,而无需先测试是否已存在。
答案 2 :(得分:0)
这是一种方式。
(1)创建“金额总计”列 (2)按“成本中心编号”和“月份”分组,总计“金额总计”。
df['Amount Total'] = df['Amount 1'] + df['Amount 2']
df.groupby(['Cost center number', 'month'])['Amount Total'].sum().reset_index()
# Cost center number month Amount Total
# 0 1234 1 40391
# 1 1234 2 796535
# 2 1234 5 1666
# 3 5678 5 987
# 4 5678 6 3079
# 5 5678 7 7872
# 6 91011 10 880
# 7 91011 11 2296
# 8 91011 12 25363
对于单行(但不太明确)的答案,请参阅@jezrael's solution。