我想将因子变量的每个实例设置为常数因子级别,但保留其他级别(不存在)级别的知识。所以:
pp.df<-data.frame(c(1:10))
for (itype in 1:4){
pp.df$TYPE<-itype
pp.df$TYPE<-as.factor(pp.df$TYPE)
levels(pp.df$TYPE)<-c("T","D","F","S")
print(summary(pp.df$TYPE))
}
产生
T D F S
10 0 0 0
T D F S
10 0 0 0
T D F S
10 0 0 0
T D F S
10 0 0 0
虽然所需的输出是:
T D F S
10 0 0 0
T D F S
0 10 0 0
T D F S
0 0 10 0
T D F S
0 0 0 10
答案 0 :(得分:1)
这样的事情?
import android.os.AsyncTask;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;
import java.io.IOException;
public class MainActivity extends AppCompatActivity {
TextView textView;
String googleImageUrl = "https://www.google.co.in/search?biw=1366&bih=675&tbm=isch&sa=1&ei=qFSJWsuTNc-wzwKFrZHoCw&q=";
ArrayList<String> urls = new ArrayList<>();
String url;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
AsyncTask.execute(new Runnable() {
@Override
public void run() {
Log.i("someething" , "something");
getImages("https://www.google.co.in/search?biw=1366&bih=675&tbm=isch&sa=1&ei=qFSJWsuTNc-wzwKFrZHoCw&q=somethingsomething");
}
});
}
private void getImages(String url) {
Document doc = null;
try{
doc = Jsoup.connect(url).get();
}catch (IOException e){
e.printStackTrace();
}
Elements imgs = doc.select("img");
System.out.println("Damn images"+imgs);
for (Element img : imgs){
Log.d("image-src", img.attr("data-src"));//changed `src` to `data-src`
}
}
答案 1 :(得分:1)
pp.df<-data.frame(c(1:10))
for (itype in 1:4){
pp.df$TYPE<-itype
# need to build the facotr with 4 levels to start with
pp.df$TYPE<-factor(pp.df$TYPE, levels=1:4)
levels(pp.df$TYPE)<-c("T","D","F","S")
print(summary(pp.df$TYPE))
}
还应该意识到pp.df在此过程之后不会拥有所有这些值:
> pp.df
c.1.10. TYPE
1 1 S
2 2 S
3 3 S
4 4 S
5 5 S
6 6 S
7 7 S
8 8 S
9 9 S
10 10 S
如果那是你想要的,那很好。如果没有,你应该描述自然语言需要什么。