将SOMbrero包中的集群和节点添加到训练数据中

时间:2018-02-17 16:36:38

标签: r self-organizing-maps

我正在玩SOMbrero包。我想附上像这样创建的簇号(取自here):

my.sc <- superClass(iris.som, k=3)

以及SOM节点与训练数据集的X和Y坐标。

在某些代码中,我使用kohonen包,我创建了这样的集群:

range01 <- function(x){(x-min(x))/(max(x)-min(x))}

ind <- sapply(SubsetData, is.numeric)
SubsetData[ind] <- lapply(SubsetData[ind], range01)

TrainingMatrix <- as.matrix(SubsetData)

GridDefinition <- somgrid(xdim = 4, ydim = 4, topo = "rectangular", toroidal = FALSE)

SomModel <- som(
    data = TrainingMatrix,
    grid = GridDefinition,
    rlen = 10000,
    alpha = c(0.05, 0.01),
    keep.data = TRUE
)

nb <- table(SomModel$unit.classif)
groups = 5
tree.hc = cutree(hclust(d=dist(SomModel$codes[[1]]),method="ward.D2",members=nb),groups)

plot(SomModel, type="codes", bgcol=rainbow(groups)[tree.hc])

add.cluster.boundaries(SomModel, tree.hc)
result <- OrginalData
result$Cluster <- tree.hc[SomModel$unit.classif]
result$X <- SomModel$grid$pts[SomModel$unit.classif,"x"]
result$Y <- SomModel$grid$pts[SomModel$unit.classif,"y"]

write.table(result, file = "FinalData.csv", sep = ",", col.names = NA, quote = FALSE)

PS:

可以找到使用iris数据集的一些示例代码here

PPS:

我使用上面引用的代码虹膜代码玩了一下,并认为我已设法提取集群,节点ID和原型(请参阅下面的代码)。缺少的是坐标X和Y.我认为它们在这里:

iris.som$parameters$the.grid$coord

代码:

library(SOMbrero)

set.seed(100)
setwd("D:\\RProjects\Clustering")

#iris.som <- trainSOM(x.data=iris[,1:4],dimension=c(10,10), maxit=100000, scaling="unitvar", radius.type="gaussian")
iris.som <- trainSOM(x.data=iris[,1:4],dimension=c(3,3), maxit=100000, scaling="unitvar", radius.type="gaussian")

# perform a hierarchical clustering
## with 3 super clusters
iris.sc <- superClass(iris.som, k=3)
summary(iris.sc)

# compute the projection quality indicators
quality(iris.som)

iris1 <- iris
iris1$Cluster = iris.sc$cluster[iris.sc$som$clustering]
iris1$Node = iris.sc$som$clustering
iris1$Pt1Sepal.Length = iris.sc$som$prototypes[iris.sc$som$clustering,1]
iris1$Pt2Sepal.Width = iris.sc$som$prototypes[iris.sc$som$clustering,2]
iris1$Pt3Petal.Length = iris.sc$som$prototypes[iris.sc$som$clustering,3]
iris1$Pt4Petal.Width = iris.sc$som$prototypes[iris.sc$som$clustering,4]

write.table(iris1, file = "Iris.csv", sep = ",", col.names = NA, quote = FALSE)

3 个答案:

答案 0 :(得分:1)

我不确定我是否正确但是:

  1. iris.som$parameters$the.grid包含聚类的坐标(它是一个两列数组,在映射空间中有x和y坐标)
  2. 所以我认为你想要做的是

    out.grid <- iris.som$parameters$the.grid$coord
    out.grid$sc <- iris.sc$clustering
    
  3. 并导出out.grid(三列数组)。 iris.sc$som$prototypes包含群集原型的坐标,但在原始空间中(iris数据集取值的四维空间。

答案 1 :(得分:1)

我想我已经使用虹膜示例找出了它(请更正/改进代码! - 我不熟练使用R):

library(SOMbrero)

set.seed(100)
setwd("D:\\RProjects\\SomBreroClustering")

iris.som <- trainSOM(x.data=iris[,1:4],dimension=c(5,5), maxit=10000, scaling="unitvar", radius.type="letremy")

# perform a hierarchical clustering
# with 3 super clusters
iris.sc <- superClass(iris.som, k=3)
summary(iris.sc)

# compute the projection quality indicators
quality(iris.som)

iris1 <- iris
iris1$Cluster = iris.sc$cluster[iris.sc$som$clustering]
iris1$Node = iris.sc$som$clustering
iris1$Pt1Sepal.Length = iris.sc$som$prototypes[iris.sc$som$clustering,1]
iris1$Pt2Sepal.Width = iris.sc$som$prototypes[iris.sc$som$clustering,2]
iris1$Pt3Petal.Length = iris.sc$som$prototypes[iris.sc$som$clustering,3]
iris1$Pt4Petal.Width = iris.sc$som$prototypes[iris.sc$som$clustering,4]
iris1$X = iris.som$parameters$the.grid$coord[iris.sc$som$clustering,1]
iris1$Y = iris.som$parameters$the.grid$coord[iris.sc$som$clustering,2]

write.table(iris1, file = "Iris.csv", sep = ",", col.names = NA, quote = FALSE)

答案 2 :(得分:1)

  

我认为我的回答可以满足要求。添加节点ID,x +   y坐标,聚类和原型到原始数据。你会   同意。

是的:)