声明:
所描述的问题看起来像是竞赛中的任务。我没有参加任何比赛,我不知道任何可能涉及问题的比赛。如果有任何一个,我会关闭这个问题以保持公平!
我有一个问题: 给定值A和整数K的数组A,将A分成恰好K个非重叠的连续子阵列,使得具有最小子阵列和子阵列最大总和的子阵列之间的差异最小。允许在任何方向上旋转任意数字A.
考虑一个例子:
输入:A = [5 1 1 1 3 2],K = 3
输出:[5] [1 1 1] [3 2],最大总和= 5,最小总和= 3,结果= 2
我有部分工作代码(非常丑陋,我的不好,但它并不意味着生产质量):
#include <climits>
#include <cstdio>
#include <cstring>
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = INT_MAX;
// consider all possible rotations/shifts
for(int offset = 0; offset < n; ++offset) {
for(int l_min = 0; l_min < n; ++l_min) {
for(int r_min = l_min; r_min < n; ++r_min) {
// check minimal sum subarray
int min_sum = sum (deps, l_min, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = 0;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = 0; l_max < n; ++l_max) {
for(int r_max = 0; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max, r_max);
if (max_sum >= min_sum) dp[p][r_max] = max(dp[p-1][l_max], max_sum);
} // l_maxs
} // r_maxs
} // partitions
// printing dp
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == 0) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
} // start min sum seg
//break;
} // cuts
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
这个想法很简单:假设当前分区具有最小总和,枚举所有可能的最大分区,设置动态编程以生成具有最小值的最大总和,检查差异。总复杂度:O(K * N ^ 4)。
我的问题是它没有通过某些测试,而且我很难对其进行故障排除。有人可以帮我吗?
测试失败,例如:
N = 4,K = 2,A = [6 13 10 2]
更新
此版本应修复以前的一些问题。首先,它消除了浪费的循环&#34;偏移&#34;并在l_min循环的末尾添加一个数组旋转。其次,我注意到,dp不能用0初始化 - 这是最小化任务,所以它应该用一些大值初始化(取决于问题的常量,max_value这里已经是超出价值领域)。最后,间隔不应该重叠 - 每个总和不包括间隔的左端。但是,它仍然没有产生预期的结果。
#include <climits>
#include <cstdio>
#include <cstring>
const int max_value = 200000;
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = max_value;
for(int l_min = 0; l_min < n; ++l_min) {
for(int r_min = l_min; r_min < n; ++r_min) {
int min_sum = sum (deps, l_min+1, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = max_value;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = 0; l_max < n; ++l_max) {
for(int r_max = l_max; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max+1, r_max);
if (max_sum >= min_sum) dp[p][r_max] = max(dp[p-1][l_max], max_sum);
} // l_maxs
} // r_maxs
} // partitions
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == max_value) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
// rotate an array to consider different starting points
int tmp[n];
for (int i = 0; i < n; ++i) {
int new_idx = i + n + 1;
tmp[new_idx % n] = deps[i];
}
for(int i = 0; i < n; ++i) deps[i] = tmp[i];
} // start min sum seg
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
答案 0 :(得分:3)
好的,我想我做到了!
我们的想法如下:我们假设最小和区间总是从0开始。然后我们开始枚举最小和区间,从最小区间的右边界开始。我们为当前最大间隔构建DP问题以确定最小最大总和。之后,您更新结果并将数组旋转一个。
我的代码并不完美,我计算每次迭代的当前总和。人们可以预先计算它们,并且每次都将它们编入索引。
此代码可能有一些错误,但它通过了我所有的测试。
#include <climits>
#include <cstdio>
#include <cstring>
const int max_value = 200000;
const int max_n = 50;
const int max_k = 20;
int deps[max_n];
int max (int x, int y) {
return x > y ? x : y;
}
int min (int x, int y) {
return x < y ? x : y;
}
int sum (int a[], int start, int end) {
int res = 0;
for (int i = start; i <= end; ++i) res += a[i];
return res;
}
int k_partitioning(int k, int n, int deps[]) {
int res = max_value;
for(int offset = 0; offset < n; ++offset) {
int l_min = 0;
for(int r_min = l_min; r_min < n; ++r_min) {
int min_sum = sum (deps, l_min, r_min);
int dp[k][n];
for (int s = 0; s < k; ++s) {
for (int q = 0; q < n; ++q) {
dp[s][q] = max_value;
}
}
// assuming that current sum is a target sum
dp[0][r_min-l_min] = min_sum;
for(int p = 1; p < k; ++p) {
for(int l_max = r_min; l_max < n; ++l_max) {
for(int r_max = l_max; r_max < n; ++r_max) {
int max_sum = sum(deps, l_max+1, r_max);
if (max_sum >= min_sum) {
dp[p][r_max] = min(dp[p][r_max], max(dp[p-1][l_max], max_sum));
}
} // l_maxs
} // r_maxs
} // partitions
// skip incorrect partitioning, when not all K partitions were used
if (dp[k-1][n-1] == max_value) continue;
// update difference
res = min (res, dp[k-1][n-1] - min_sum);
} // end min sum seg
int tmp[n];
for (int i = 0; i < n; ++i) {
int new_idx = i + n - 1;
tmp[new_idx % n] = deps[i];
}
for(int i = 0; i < n; ++i) deps[i] = tmp[i];
} // start min sum seg
return res;
}
int main(int argc, char* argv[]) {
int k = 0;
scanf("%d", &k);
int n = 0;
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%d", &deps[i]);
}
printf ("%d\n", k_partitioning(k, n, deps));
return 0;
}
答案 1 :(得分:1)
无旋转的解决方案:
4)F后面的逻辑:填充一个桶,直到不超过S / K。然后移至下一个铲斗。如果还有剩余的物品而没有剩余的存储桶,则答案为假- O(n)
时间复杂度 = O(n)+ O(n)*(log(SM))= O(n * log( S - M ))
旋转解决方案:
对于[0,1,... N-1]中的所有旋转,计算最小和。
总时间复杂度 = O(n)* O(nlog(SM))= O(n ^ 2 * log( S - M ))
答案 2 :(得分:0)
现在您的代码已经运行了,这是另一种方法:)
考虑到每个k
,我们可以将从A[i]
到左侧(sum A[i-j..i]
)的总和与f(k-1, i-j-1)
记录的所有可用间隔配对并更新它们 - 对于每个区间(low, high)
,如果总和大于high
,则new_interval = (low, sum)
,如果总和低于low
,则new_interval = (sum, high)
;否则,间隔保持不变。例如,
i: 0 1 2 3 4 5
A: [5 1 1 1 3 2]
k = 3
i = 3, j = 0
The ordered intervals available for f(3-1, 3-0-1) = f(2,2) are:
(2,5), (1,6) // These were the sums, (A[1..2], A[0]) and (A[2], A[0..1])
Sum = A[3..3-0] = 1
Update intervals: (2,5) -> (1,5)
(1,6) -> (1,6) no change
现在,我们可以通过在前一轮k
轮次中识别和修剪间隔来提高此迭代次数 的效率。
观看:
A: [5 1 1 1 3 2]
K = 1:
N = 0..5; Intervals: (5,5), (6,6), (7,7), (8,8), (11,11), (13,13)
K = 2:
N = 0: Intervals: N/A
N = 1: Intervals: (1,5)
N = 2: (1,6), (2,5)
Prune: remove (1,6) since any sum <= 1 would be better paired with (2,5)
and any sum >= 6 would be better paired with (2,5)
N = 3: (1,7), (2,6), (3,5)
Prune: remove (2,6) and (1,7)
N = 4: (3,8), (4,7), (5,6), (5,6)
Prune: remove (3,8) and (4,7)
N = 5: (2,11), (5,8), (6,7)
Prune: remove (2,11) and (5,8)
对于k = 2
,我们现在留下以下修剪记录:
{
k: 2,
n: {
1: (1,5),
2: (2,5),
3: (3,5),
4: (5,6),
5: (6,7)
}
}
我们已将k = 3
可能拆分列表中n choose 2
的迭代减少到n
相关拆分!
适用于k = 3
的一般算法:
for k' = 1 to k
for sum A[i-j..i], for i <- [k'-1..n], j <- [0..i-k'+1]:
for interval in record[k'-1][i-j-1]: // records are for [k'][n']
update interval
prune intervals in k'
k' = 3
i = 2
sum = 1, record[2][1] = (1,5) -> no change
i = 3
// sums are accumulating right to left starting from A[i]
sum = 1, record[2][2] = (2,5) -> (1,5)
sum = 2, record[2][1] = (1,5) -> no change
i = 4
sum = 3, record[2][3] = (3,5) -> no change
sum = 4, record[2][2] = (2,5) -> no change
sum = 5, record[2][1] = (1,5) -> no change
i = 5
sum = 2, record[2][4] = (5,6) -> (2,6)
sum = 5, record[2][3] = (3,5) -> no change
sum = 6, record[2][2] = (2,5) -> (2,6)
sum = 7, record[2][1] = (1,5) -> (1,7)
答案是5
与record[2][3] = (3,5)
配对,产生更新的时间间隔(3,5)
。我会留下修剪逻辑让读者解决问题。如果我们想继续,这是k = 3
{
k: 3
n: {
2: (1,5),
3: (1,5),
4: (3,5),
5: (3,5)
}
}