为什么运行时会继续在Google Colab上崩溃。
我有一个在我的机器上运行的简单MLP代码。我尝试在Colab上运行相同的代码,但在加载数据文件后立即崩溃。
数据文件总共约3GB。 Colab虚拟机的CPU和GPU内存很容易超过它。
那为什么我的程序在开始训练之前就崩溃了。
我的代码:
def load_raw(name):
return (np.load(name + '.npy', encoding='bytes'), np.load(name + '_labels.npy', encoding='bytes'))
class WSJ():
def __init__(self):
self.dev_set = None
self.train_set = None
self.test_set = None
@property
def dev(self):
if self.dev_set is None:
self.dev_set = load_raw('dev')
return self.dev_set
@property
def train(self):
if self.train_set is None:
self.train_set = load_raw('train')
return self.train_set
@property
def test(self):
if self.test_set is None:
self.test_set = (np.load('test.npy', encoding='bytes'), None)
return self.test_set
def preprocess_data(self, trainX, trainY, k):
# some form of preprocessing that pads and flattens the data into the format required
return trainX_padded, trainY, y_to_x_map
def main():
global index
padding = 3
epochs = 1
batch_size = 512
lr = 0.1
momentum = 0.9
input_dim = 40 * ((2*padding) + 1)
output_dim = 138
neural_net = MLP(input_dim, output_dim)
!free -g
print("Starting...")
loader = WSJ()
trainX, trainY = loader.train
print("Training Data obtained...")
!free -g
trainX, trainY, y_to_x_map = loader.preprocess_data(trainX, trainY, k = padding)
print("Training Data preprocessed...")
!free -g
devX, devY = loader.dev
devX, devY, y_to_x_map_dev = loader.preprocess_data(devX, devY, k = padding)
print("Development data preprocessed...")
!free -g
print("Scaling...")
input_scaler = preprocessing.StandardScaler().fit(trainX)
!free -g
trainX = input_scaler.transform(trainX)
devX = input_scaler.transform(devX)
打印缩放后立即崩溃......