使用PySpark中的不同子ArrayType元素进行计数

时间:2018-02-16 14:19:03

标签: python apache-spark pyspark pyspark-sql

我有以下JSON结构:

{ 
   "stuff": 1, "some_str": "srt", list_of_stuff": [
                  {"element_x":1, "element_y":"22x"}, 
                  {"element_x":3, "element_y":"23x"}
                ]
}, 
{ 
   "stuff": 2, "some_str": "srt2", "list_of_stuff": [
                  {"element_x":1, "element_y":"22x"}, 
                  {"element_x":4, "element_y":"24x"}
                ]
}, 

当我把它作为json:

读入PySpark DataFrame时
import pyspark.sql
import json
from pyspark.sql import functions as F
from pyspark.sql.types import *

schema = StructType([
       StructField("stuff", IntegerType()),
       StructField("some_str", StringType()),
       StructField("list_of_stuff", ArrayType(
               StructType([
                   StructField("element_x", IntegerType()),
                   StructField("element_y", StringType()),
    ])
))
])


df = spark.read.json("hdfs:///path/file.json/*", schema=schema)
df.show()

我得到以下内容:

+--------+---------+-------------------+
| stuff  | some_str|    list_of_stuff  |
+--------+---------+-------------------+
|   1    |   srt   |  [1,22x], [3,23x] |
|   2    |   srt2  |  [1,22x], [4,24x] |
+--------+---------+-------------------+

似乎像PySpark一样扁平化了ArrayType的键名,虽然我在df.printSchema()时仍能看到它们:

root
|-- stuff: integer (nullable = true)
|-- some_str: string (nullable = true)
|-- list_of_stuff: array (nullable = true)
|    |-- element: struct (containsNull = true)
|    |    |-- element_x: integer (nullable = true)
|    |    |-- element_y: string (nullable = true)

问题: 我需要计算我的DataFrame中element_y的不同出现次数。所以给定示例JSON,我会得到这个输出:

22x: 2, 23x: 1, 24x :1

我不确定如何进入ArrayType并计算子元素element_y的不同值。任何帮助表示赞赏。

1 个答案:

答案 0 :(得分:2)

执行此操作的一种方法是使用rddflatten使用flatMap数组,然后计算:

df.rdd.flatMap(lambda r: [x.element_y for x in r['list_of_stuff']]).countByValue()
# defaultdict(<class 'int'>, {'24x': 1, '22x': 2, '23x': 1})

或者首先使用数据框explode列,然后您可以访问每个数组中的element_y; groupBy element_y,然后count应该提供您需要的结果:

import pyspark.sql.functions as F
(df.select(F.explode(df.list_of_stuff).alias('stuff'))
   .groupBy(F.col('stuff').element_y.alias('key'))
   .count()
   .show())
+---+-----+
|key|count|
+---+-----+
|24x|    1|
|22x|    2|
|23x|    1|
+---+-----+