我有1D序列,我想将其用作Keras VGG
分类模型的输入,分为x_train
和x_test
。对于每个序列,我还有feats_train
和feats_test
中存储的自定义功能,我不想将其输入到卷积层,而是输入到第一个完全连接的层。
完整的列车或测试样本将由一维序列加上n个浮点特征组成。
首先将自定义功能提供给完全连接的图层的最佳方法是什么?我想过连接输入序列和自定义功能,但我不知道如何在模型中将它们分开。还有其他选择吗?
没有自定义功能的代码:
x_train, x_test, y_train, y_test, feats_train, feats_test = load_balanced_datasets()
model = Sequential()
model.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
model.add(Conv1D(10, 5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5, seed=789))
model.add(Conv1D(5, 6, activation='relu'))
model.add(Conv1D(5, 6, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5, seed=789))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5, seed=789))
model.add(Dense(2, activation='softmax'))
model.compile(loss='logcosh', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, epochs=20, shuffle=False, verbose=1)
y_pred = model.predict(x_test)
答案 0 :(得分:2)
Sequential
模型不是很灵活。您应该查看functional API。
我会尝试这样的事情:
from keras.layers import (Conv1D, MaxPool1D, Dropout, Flatten, Dense,
Input, concatenate)
from keras.models import Model, Sequential
timesteps = 50
n = 5
def network():
sequence = Input(shape=(timesteps, 1), name='Sequence')
features = Input(shape=(n,), name='Features')
conv = Sequential()
conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
conv.add(Conv1D(10, 5, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5, seed=789))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(Conv1D(5, 6, activation='relu'))
conv.add(MaxPool1D(2))
conv.add(Dropout(0.5, seed=789))
conv.add(Flatten())
part1 = conv(sequence)
merged = concatenate([part1, features])
final = Dense(512, activation='relu')(merged)
final = Dropout(0.5, seed=789)(final)
final = Dense(2, activation='softmax')(final)
model = Model(inputs=[sequence, features], outputs=[final])
model.compile(loss='logcosh', optimizer='adam', metrics=['accuracy'])
return model
m = network()