为Keras顺序模型添加手工制作的功能

时间:2018-02-16 13:19:02

标签: python tensorflow machine-learning deep-learning keras

我有1D序列,我想将其用作Keras VGG分类模型的输入,分为x_trainx_test。对于每个序列,我还有feats_trainfeats_test中存储的自定义功能,我不想将其输入到卷积层,而是输入到第一个完全连接的层。

完整的列车或测试样本将由一维序列加上n个浮点特征组成。

首先将自定义功能提供给完全连接的图层的最佳方法是什么?我想过连接输入序列和自定义功能,但我不知道如何在模型中将它们分开。还有其他选择吗?

没有自定义功能的代码:

x_train, x_test, y_train, y_test, feats_train, feats_test = load_balanced_datasets()

model = Sequential()
model.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
model.add(Conv1D(10, 5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5, seed=789))

model.add(Conv1D(5, 6, activation='relu'))
model.add(Conv1D(5, 6, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5, seed=789))

model.add(Flatten())

model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5, seed=789))
model.add(Dense(2, activation='softmax'))

model.compile(loss='logcosh', optimizer='adam', metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=batch_size, epochs=20, shuffle=False, verbose=1)

y_pred = model.predict(x_test)

1 个答案:

答案 0 :(得分:2)

Sequential模型不是很灵活。您应该查看functional API

我会尝试这样的事情:

from keras.layers import (Conv1D, MaxPool1D, Dropout, Flatten, Dense,
                          Input, concatenate)
from keras.models import Model, Sequential

timesteps = 50
n = 5

def network():
    sequence = Input(shape=(timesteps, 1), name='Sequence')
    features = Input(shape=(n,), name='Features')

    conv = Sequential()
    conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))
    conv.add(Conv1D(10, 5, activation='relu'))
    conv.add(MaxPool1D(2))
    conv.add(Dropout(0.5, seed=789))

    conv.add(Conv1D(5, 6, activation='relu'))
    conv.add(Conv1D(5, 6, activation='relu'))
    conv.add(MaxPool1D(2))
    conv.add(Dropout(0.5, seed=789))
    conv.add(Flatten())
    part1 = conv(sequence)

    merged = concatenate([part1, features])

    final = Dense(512, activation='relu')(merged)
    final = Dropout(0.5, seed=789)(final)
    final = Dense(2, activation='softmax')(final)

    model = Model(inputs=[sequence, features], outputs=[final])

    model.compile(loss='logcosh', optimizer='adam', metrics=['accuracy'])

    return model

m = network()