从领先的特定实例清除列表

时间:2018-02-16 07:20:43

标签: python

我想清除'a'的前导出现的列表。也就是说,['a', 'a', 'b', 'b']应该变为['b', 'b'],同时['b', 'a', 'a', 'b']应该保持不变。

def remove_leading_items(l):
    if len(l) == 1 or l[0] != 'a':
        return l
    else:
        return remove_leading_items(l[1:])

有更多的pythonic方式吗?

4 个答案:

答案 0 :(得分:8)

是。你应该立即使用for循环。递归通常不是Pythonic。其次,使用内置工具:

from itertools import dropwhile

def remove_leading_items(l, item):
    return list(dropwhile (lambda x: x == item, l))

或者

return list(dropwhile(item.__eq__, l))

修改

出于好奇,我用不同的方法做了一些实验来解决这个问题:

from itertools import dropwhile
from functools import partial
from operator import eq

def _eq_drop(l, e):
    return dropwhile(e.__eq__, l)

def lam_drop(l, e):
    return dropwhile(lambda x:x==e, l)

def partial_drop(l, e):
    return dropwhile(partial(eq, e), l)

首先,使用完全删除的列表:即(1, 1, 1, ...)

In [64]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(_eq_drop(t0, 1))
    ...:
1000 loops, best of 3: 389 µs per loop

In [65]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(lam_drop(t0, 1))
    ...:
1000 loops, best of 3: 1.19 ms per loop

In [66]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(partial_drop(t0, 1))
    ...:
1000 loops, best of 3: 893 µs per loop

所以__eq__显然是这种情况下最快的。我喜欢它,但它直接使用dunder方法,有时不赞成。 dropwhile(partial(eq...方法(罗嗦而又明确)介于两者之间,而缓慢,笨拙的lambda方法最后出现。不足为奇。

现在,当一半被删除时,即(1, 1, 1, ..., 0, 0, 0)

In [52]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(_eq_drop(t2, 1))
    ...:
1000 loops, best of 3: 245 µs per loop

In [53]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(lam_drop(t2, 1))
    ...:
1000 loops, best of 3: 652 µs per loop

In [54]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: list(partial_drop(t2, 1))
    ...:
1000 loops, best of 3: 487 µs per loop

差异并不明显。

至于为什么我说递归不是Pythonic,请考虑以下内容:

In [6]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: remove_leading_items(t0, 1)
   ...:
1 loop, best of 3: 405 ms per loop

In [7]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: remove_leading_items(t1, 1)
   ...:
10000 loops, best of 3: 34.7 µs per loop

In [8]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: remove_leading_items(t2, 1)
   ...:
1 loop, best of 3: 280 ms per loop

除了退出0(嗯,1项)的堕落情况之外,它在灾难性的情况下表现得更糟。

快速,灵活的方法

现在,如果你知道你总是想要一个列表,那么请考虑一种高度迭代的非常方法:

def for_loop(l, e):
    it = iter(l)
    for x in it:
        if x != e:
            break
    else:
        return []
    return [x, *it]

它比使用内置插件更好!

In [33]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: for_loop(t0, 1)
    ...:
1000 loops, best of 3: 270 µs per loop

In [34]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: for_loop(t1, 1)
    ...:
10000 loops, best of 3: 50.7 µs per loop

In [35]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
    ...: for_loop(t2, 1)
    ...:
10000 loops, best of 3: 160 µs per loop

不太快,但更灵活!

保持灵活性的良好折衷方案可能是使用基于生成器的方法:

In [5]: def gen_drop(l, e):
   ...:     it = iter(l)
   ...:     for x in it:
   ...:         if x != e:
   ...:             break
   ...:     yield x
   ...:     yield from it
   ...:

In [6]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: list(gen_drop(t0, 1))
   ...:
1000 loops, best of 3: 287 µs per loop

In [7]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: list(gen_drop(t1, 1))
   ...:
1000 loops, best of 3: 359 µs per loop

In [8]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: list(gen_drop(t2, 1))
   ...:
1000 loops, best of 3: 324 µs per loop

使用deque

最后,deque方法:

In [1]: from collections import deque
   ...:
   ...: def noLeadingZero(l, e):
   ...:     d = deque(l)
   ...:     for x in l:
   ...:         if e == x:
   ...:             d.popleft()
   ...:         else:
   ...:             break
   ...:     return list(d)
   ...:

In [2]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: noLeadingZero(t0, 1)
   ...:
1000 loops, best of 3: 873 µs per loop

In [3]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: noLeadingZero(t1, 1)
   ...:
10000 loops, best of 3: 121 µs per loop

In [4]: %%timeit n = 10000; t0 = (1,)*n; t1 = (1,) + (0,)*(n-1); t2 = (1,)*(n//2) + (0,)*(n//2);
   ...: noLeadingZero(t2, 1)
   ...:
1000 loops, best of 3: 502 µs per loop

答案 1 :(得分:0)

代码:

def remove_leading(a_list, to_remove):
    i = 0
    while i < len(a_list) and  a_list[i] == to_remove:
        i += 1
    return a_list[i:]

测试代码:

print(remove_leading(list('aabb'), 'a'))
print(remove_leading(list('baab'), 'a'))
print(remove_leading([], 'a'))

结果:

['b', 'b']
['b', 'a', 'a', 'b']
[]

答案 2 :(得分:0)

您也可以尝试: -

s = ['a', 'a', 'b', 'b','a','a','b']
def check(ls):
    new_ls = ls
    count = 0
    while ls[0]=='a':
        new_ls = ls[(count+1):]
        ls = new_ls
    return new_ls
print(check(s))

答案 3 :(得分:0)

代码:

my_list = ['a', 'a', 'b', 'b', 'a', 'b']
item_i_hate = 'a'
for index in range(len(my_list)):
    if my_list[index] != item_i_hate:
        my_list = my_list[index:]
        break