1)应为变量sku
中列出的每个唯一观察创建一个新变量,其中包含重复值。
2)只要观察'price
值在同一子类别中sku
,就应该在商店/周级别为这些新创建的变量分配自有产品subc
的值。 })作为变量本身。例如,在第{3,4}和第5行中的eta2,3,
观察值具有相同的值,因为它们都与sku#3属于相同的子类别。 [eta2,3
表示sku 3,副2。]
3)x
表示这是当前正在复制的产品/子类别的原始值。
4)如果观察不属于同一子类别,则应反映“0”。
Orange是给定的数据。绿色是步骤1,2和3中的值。白色单元格是步骤4.
我无法提供自己的解决方案,因为正在搜索 使用现有观察生成变量的方法并没有给我带来结果。
我也理解它必须是forvalues
,foreach
和levelsof
命令的组合?
clear
input units price sku week store subc
3 4.3 1 1 1 1
2 3 2 1 1 1
1 2.5 3 1 1 2
4 12 5 1 1 2
5 12 6 1 1 3
35 4.3 1 1 2 1
23 3 2 1 2 1
12 2.5 3 1 2 2
35 12 5 1 2 2
35 12 6 1 2 3
3 20 1 2 1 1
2 30 2 2 1 1
4 40 3 2 2 2
1 50 4 2 2 2
9 10 5 2 2 2
2 90 6 2 2 3
end
更新 根据Nick Cox的反馈,这是给出我一直在寻找的结果的最终代码:
clear
input units price sku week store subc
35 4.3 1 1 1 1
23 3 2 1 1 1
12 2.5 3 1 1 2
10 1 4 1 1 2
35 12 5 1 1 2
35 12 6 1 1 3
35 5.3 1 2 1 1
23 4 2 2 1 1
12 3.5 3 2 1 2
10 2 4 2 1 2
35 13 5 2 1 2
35 13 6 2 1 3
end
egen joint = group(subc sku), label
bysort store week : gen freq = _N
su freq, meanonly
local jmax = r(max)
drop freq
tostring subc sku, replace
gen new = subc + "_"+sku
su joint, meanonly
forval j = 1/`r(max)'{
local J = new[`j']
gen eta`J' = .
}
sort subc week store sku
egen joint1 = group(subc week store), label
gen long id = _n
su joint1, meanonly
quietly forval i = 1/`r(max)' {
su id if joint1 == `i', meanonly
local jmin = r(min)
local jmax = r(max)
forval j = `jmin'/`jmax' {
local subc = subc[`j']
local sku = sku[`j']
replace eta`subc'_`sku' = price[`j'] in `jmin'/`jmax'
replace eta`subc'_`sku' = 0 in `j'/`j'
}
}
答案 0 :(得分:1)
我代表您担心,在您要求的任何大小的数据集中,将意味着许多额外的变量。我想知道你是否需要他们所有的任何方式,无论你想做什么。
除此之外,这似乎是你想要的。当然,电子表格视图中的列标题不是合法的变量名称。披露:尽管我是levelsof
的原始作者,但我不会在这里使用它。
clear
input units price sku week store subc
35 4.3 1 1 1 1
23 3 2 1 1 1
12 2.5 3 1 1 2
10 1 4 1 1 2
35 12 5 1 1 2
35 12 6 1 1 3
end
sort subc sku
* subc identifiers guaranteed to be integers 1 up
egen subc_id = group(subc), label
* observation numbers in a variable
gen long id = _n
* how many subc? loop over the range
su subc_id, meanonly
forval i = 1/`r(max)' {
* which subc is this one? look it up using -summarize-
* assuming that subc is numeric!
su subc if subc_id == `i', meanonly
local I = r(min)
* which observation numbers for this subc?
* given the prior sort, they are all contiguous
su id if subc_id == `i', meanonly
* for each observation in the subc, find out the sku and copy its price
* to all observations in that subc
forval j = `r(min)'/`r(max)' {
local J = sku[`j']
gen eta_`I'_`J' = cond(subc_id == `i', price[`j'], 0)
}
}
list subc eta*, sepby(subc)
+------------------------------------------------------------------+
| subc eta_1_1 eta_1_2 eta_2_3 eta_2_4 eta_2_5 eta_3_6 |
|------------------------------------------------------------------|
1. | 1 4.3 3 0 0 0 0 |
2. | 1 4.3 3 0 0 0 0 |
|------------------------------------------------------------------|
3. | 2 0 0 2.5 1 12 0 |
4. | 2 0 0 2.5 1 12 0 |
5. | 2 0 0 2.5 1 12 0 |
|------------------------------------------------------------------|
6. | 3 0 0 0 0 0 12 |
+------------------------------------------------------------------+
注意:
N1。在您的示例中,subc
编号为1,2等。我的额外变量subc_id
确保即使在您的真实数据中标识符不那么干净也是如此。
N2。表达式
cond(subc_id == `i', price[`j'], 0)
也可能是
(subc_id == `i') * price[`j']
N3。似乎有可能不同的数据结构会更有效率。
编辑:这是另一个数据结构的代码和结果。
clear
input units price sku week store subc
35 4.3 1 1 1 1
23 3 2 1 1 1
12 2.5 3 1 1 2
10 1 4 1 1 2
35 12 5 1 1 2
35 12 6 1 1 3
end
sort subc sku
egen subc_id = group(subc), label
bysort subc : gen freq = _N
su freq, meanonly
local jmax = r(max)
drop freq
forval j = 1/`jmax' {
gen eta`j' = .
gen which`j' = .
}
gen long id = _n
su subc_id, meanonly
quietly forval i = 1/`r(max)' {
su id if subc_id == `i', meanonly
local jmin = r(min)
local jmax = r(max)
local k = 1
forval j = `jmin'/`jmax' {
replace which`k' = sku[`j'] in `jmin'/`jmax'
replace eta`k' = price[`j'] in `jmin'/`jmax'
local ++k
}
}
list subc sku *1 *2 *3 , sepby(subc)
+------------------------------------------------------------+
| subc sku eta1 which1 eta2 which2 eta3 which3 |
|------------------------------------------------------------|
1. | 1 1 4.3 1 3 2 . . |
2. | 1 2 4.3 1 3 2 . . |
|------------------------------------------------------------|
3. | 2 3 2.5 3 1 4 12 5 |
4. | 2 4 2.5 3 1 4 12 5 |
5. | 2 5 2.5 3 1 4 12 5 |
|------------------------------------------------------------|
6. | 3 6 12 6 . . . . |
+------------------------------------------------------------+
答案 1 :(得分:1)
我正在添加另一个解决subc
和week
组合的答案。之前的讨论确定了您要做的事情为每次观察添加额外的变量。这不是个好主意!充其量,您可能只有许多新变量,大多数为零。在最坏的情况下,你会遇到Stata的限制。
因此,我不会支持你在同一条道路上走得更远的努力,但是要说明我在之前的答案中讨论的第二个数据结构是如何产生的。实际上,您没有指出(a)为什么您想要所有这些变量,这些变量只是现有数据的重新分配; (b)你的策略是如何处理它们的; (c)为什么rangestat
(SSC)或其他一些程序无法首先消除创建它们的需要。
clear
input units price sku week store subc
35 4.3 1 1 1 1
23 3 2 1 1 1
12 2.5 3 1 1 2
10 1 4 1 1 2
35 12 5 1 1 2
35 12 6 1 1 3
35 5.3 1 2 1 1
23 4 2 2 1 1
12 3.5 3 2 1 2
10 2 4 2 1 2
35 13 5 2 1 2
35 13 6 2 1 3
end
sort subc week sku
egen joint = group(subc week), label
bysort joint : gen freq = _N
su freq, meanonly
local jmax = r(max)
drop freq
forval j = 1/`jmax' {
gen eta`j' = .
gen which`j' = .
}
gen long id = _n
su joint, meanonly
quietly forval i = 1/`r(max)' {
su id if joint == `i', meanonly
local jmin = r(min)
local jmax = r(max)
local k = 1
forval j = `jmin'/`jmax' {
replace which`k' = sku[`j'] in `jmin'/`jmax'
replace eta`k' = price[`j'] in `jmin'/`jmax'
local ++k
}
}
list subc week sku *1 *2 *3 , sepby(subc week)
+-------------------------------------------------------------------+
| subc week sku eta1 which1 eta2 which2 eta3 which3 |
|-------------------------------------------------------------------|
1. | 1 1 1 4.3 1 3 2 . . |
2. | 1 1 2 4.3 1 3 2 . . |
|-------------------------------------------------------------------|
3. | 1 2 1 5.3 1 4 2 . . |
4. | 1 2 2 5.3 1 4 2 . . |
|-------------------------------------------------------------------|
5. | 2 1 3 2.5 3 1 4 12 5 |
6. | 2 1 4 2.5 3 1 4 12 5 |
7. | 2 1 5 2.5 3 1 4 12 5 |
|-------------------------------------------------------------------|
8. | 2 2 3 3.5 3 2 4 13 5 |
9. | 2 2 4 3.5 3 2 4 13 5 |
10. | 2 2 5 3.5 3 2 4 13 5 |
|-------------------------------------------------------------------|
11. | 3 1 6 12 6 . . . . |
|-------------------------------------------------------------------|
12. | 3 2 6 13 6 . . . . |
+-------------------------------------------------------------------+
答案 2 :(得分:0)
clear
input units price sku week store subc
35 4.3 1 1 1 1
23 3 2 1 1 1
12 2.5 3 1 1 2
10 1 4 1 1 2
35 12 5 1 1 2
35 12 6 1 1 3
35 5.3 1 2 1 1
23 4 2 2 1 1
12 3.5 3 2 1 2
10 2 4 2 1 2
35 13 5 2 1 2
35 13 6 2 1 3
end
egen joint = group(subc sku), label
bysort store week : gen freq = _N
su freq, meanonly
local jmax = r(max)
drop freq
tostring subc sku, replace
gen new = subc + "_"+sku
su joint, meanonly
forval j = 1/`r(max)'{
local J = new[`j']
gen eta`J' = .
}
sort subc week store sku
egen joint1 = group(subc week store), label
gen long id = _n
su joint1, meanonly
quietly forval i = 1/`r(max)' {
su id if joint1 == `i', meanonly
local jmin = r(min)
local jmax = r(max)
forval j = `jmin'/`jmax' {
local subc = subc[`j']
local sku = sku[`j']
replace eta`subc'_`sku' = price[`j'] in `jmin'/`jmax'
replace eta`subc'_`sku' = 0 in `j'/`j'
}
}
list subc sku store week eta*, sepby(subc)
+---------------------------------------------------------------------------------+
| store week subc sku eta1_1 eta1_2 eta2_3 eta2_4 eta2_5 eta3_6 |
|---------------------------------------------------------------------------------|
1. | 1 1 1 2 4.3 0 . . . . |
2. | 1 1 1 1 0 3 . . . . |
|---------------------------------------------------------------------------------|
3. | 1 1 2 4 . . 2.5 0 12 . |
4. | 1 1 2 3 . . 0 1 12 . |
5. | 1 1 2 5 . . 2.5 1 0 . |
|---------------------------------------------------------------------------------|
6. | 1 1 3 6 . . . . . 0 |
|---------------------------------------------------------------------------------|
7. | 1 2 1 2 5.3 0 . . . . |
8. | 1 2 1 1 0 4 . . . . |
|---------------------------------------------------------------------------------|
9. | 1 2 2 3 . . 0 2 13 . |
10. | 1 2 2 5 . . 3.5 2 0 . |
11. | 1 2 2 4 . . 3.5 0 13 . |
|---------------------------------------------------------------------------------|
12. | 1 2 3 6 . . . . . 0 |
+---------------------------------------------------------------------------------+