func pageViewController(pageViewController: UIPageViewController, viewControllerBeforeViewController viewController: UIViewController) -> UIViewController? {
let identifier = viewController.restorationIdentifier
var index = self.pageTitles.indexOf(identifier!)!
print("index back = \(index)")
if index == 0 {
currentPageCount = -1
nextPageCount = index
}
if index == 0 || index == NSNotFound {
return nil
}
index -= 1
currentPageCount = index-1
nextPageCount = index
return self.viewControllerAtIndex(index)
}
func pageViewController(pageViewController: UIPageViewController, viewControllerAfterViewController viewController: UIViewController) -> UIViewController? {
let identifier = viewController.restorationIdentifier
var index = self.pageTitles.indexOf(identifier!)!
if index == NSNotFound {
return nil;
}
index += 1
if index == self.pageTitles.count {
return nil;
}
return self.viewControllerAtIndex(index)
}
import os
import gensim.models as g
import logging
import gensim
os.chdir("/home/ai/path");
#doc2vec parameters
vector_size = 300
window_size = 5
min_count = 1
sampling_threshold = 1e-5
negative_size = 5
train_epoch = 100
dm= 0
worker_count = 2 #number of parallel processes
#pretrained word embeddings
pretrained_emb = "GoogleNews-vectors-negative300.bin"
#input corpus
train_corpus = "mydata.txt"
#output model
saved_path = "Googlemodel.bin"
#enable logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %
(message)s',
level=logging.INFO)
#train doc2vec model
docs = g.doc2vec.TaggedLineDocument(train_corpus)
model = g.Doc2Vec(docs, size=vector_size, window=window_size,
min_count=min_count, sample=sampling_threshold, workers=worker_count,
hs=0, dm=dm, negative=negative_size, dbow_words=1, dm_concat=1,
pretrained_emb=pretrained_emb, iter=train_epoch)
的大小为3.6 GB,我的数据大小为 455 MB 。
运行此代码或培训流程完成后,我的输出模型仅提供 850 MB 。