tensorflow TypeError:Fetch参数None具有无效类型<class'nonetype'=“”>

时间:2018-02-14 13:16:14

标签: python tensorflow

我正在做cs231n赋值2并遇到了这个问题。

我正在使用tensorflow-gpu 1.5.0

代码如下

# define our input (e.g. the data that changes every batch)
# The first dim is None, and gets sets automatically based on batch size fed in
X = tf.placeholder(tf.float32, [None, 32, 32, 3])
y = tf.placeholder(tf.int64, [None])
is_training = tf.placeholder(tf.bool)

# define model
def complex_model(X,y,is_training):
    pass

y_out = complex_model(X,y,is_training)

# Now we're going to feed a random batch into the model 
# and make sure the output is the right size
x = np.random.randn(64, 32, 32,3)
with tf.Session() as sess:
    with tf.device("/cpu:0"): #"/cpu:0" or "/gpu:0"
    tf.global_variables_initializer().run()

    ans = sess.run(y_out,feed_dict={X:x,is_training:True})
    %timeit sess.run(y_out,feed_dict={X:x,is_training:True})
    print(ans.shape)
    print(np.array_equal(ans.shape, np.array([64, 10])))

完成追溯

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-6-97f0b6c5a72e> in <module>()
      6         tf.global_variables_initializer().run()
      7 
----> 8         ans = sess.run(y_out,feed_dict={X:x,is_training:True})
      9         get_ipython().run_line_magic('timeit',     'sess.run(y_out,feed_dict={X:x,is_training:True})')
     10         print(ans.shape)

c:\users\kasper\appdata\local\programs\python\python36\lib\site-    packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    893     try:
    894       result = self._run(None, fetches, feed_dict, options_ptr,
--> 895                          run_metadata_ptr)
    896       if run_metadata:
    897         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

c:\users\kasper\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1111     # Create a fetch handler to take care of the structure of fetches.
   1112     fetch_handler = _FetchHandler(
-> 1113         self._graph, fetches, feed_dict_tensor,     feed_handles=feed_handles)
   1114 
   1115     # Run request and get response.

c:\users\kasper\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)
    419     with graph.as_default():
--> 420       self._fetch_mapper = _FetchMapper.for_fetch(fetches)
    421     self._fetches = []
    422     self._targets = []

c:\users\kasper\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
    235     if fetch is None:
    236       raise TypeError('Fetch argument %r has invalid type %r' %
--> 237                       (fetch, type(fetch)))
    238     elif isinstance(fetch, (list, tuple)):
    239       # NOTE(touts): This is also the code path for namedtuples.

TypeError: Fetch argument None has invalid type <class 'NoneType'>

我之前在网站上看到过类似的问题,但那些似乎并不能解决我的问题。

任何帮助将不胜感激,谢谢!

2 个答案:

答案 0 :(得分:2)

问题是y_out的{​​{1}}参数是sess.run(),而它必须是None(或类似张量的对象,例如{{1} }}或tf.Tensor

在您的示例中,tf.Variable由以下代码定义:

tf.Operation

y_out未返回值,因此# define model def complex_model(X,y,is_training): pass y_out = complex_model(X,y,is_training) 会将complex_model()设置为y_out = complex_model(...)。我不确定此函数是否代表您的实际代码,但您的真实y_out函数可能也缺少None语句。

答案 1 :(得分:1)

我相信 mrry 是对的。

如果您再次查看笔记本Assignment 2 - Tensorflow.ipynb,您会注意到描述单元格如下:

  

培训特定模型

     

在本节中,我们将为您构建一个模型。   这里的目标不是获得良好的表现(那将是下一个),但是   而是要熟悉TensorFlow   文档和配置自己的模型。

     

使用上面提供的代码作为指导,并使用以下内容   TensorFlow文档,使用以下内容指定模型   架构:

7x7 Convolutional Layer with 32 filters and stride of 1
ReLU Activation Layer
Spatial Batch Normalization Layer (trainable parameters, with scale and centering)
2x2 Max Pooling layer with a stride of 2
Affine layer with 1024 output units
ReLU Activation Layer
Affine layer from 1024 input units to 10 outputs

要求您在函数

中定义模型
# define model
def complex_model(X,y,is_training):
    pass

就像他们在

中所做的那样
def simple_model(X,y):
    # define our weights (e.g. init_two_layer_convnet)

    # setup variables
    Wconv1 = tf.get_variable("Wconv1", shape=[7, 7, 3, 32])
    bconv1 = tf.get_variable("bconv1", shape=[32])
    W1 = tf.get_variable("W1", shape=[5408, 10])
    b1 = tf.get_variable("b1", shape=[10])

    # define our graph (e.g. two_layer_convnet)
    a1 = tf.nn.conv2d(X, Wconv1, strides=[1,2,2,1], padding='VALID') + bconv1
    h1 = tf.nn.relu(a1)
    h1_flat = tf.reshape(h1,[-1,5408])
    y_out = tf.matmul(h1_flat,W1) + b1
    return y_out

希望这有帮助!