将列拆分为数据帧

时间:2018-02-14 12:12:14

标签: python python-3.x pandas

我有一些凌乱的传感器读数数据看起来像这样。每条记录(不同长度)由“----”分隔并堆叠在一起。有没有办法将它压缩成一个数据帧,其中每一行都是一个记录?

test = pd.DataFrame({"Messy":["21/12/2017 11:12:48","Port:4","Reading 1: 1","----","21/12/2017 11:13:48","Port:4","Reading 1: 2","Reading 2: 2.5","----"]})
test

    Messy
0   21/12/2017 11:12:48
1   Port:4
2   Reading 1: 1
3   ----
4   21/12/2017 11:13:48
5   Port:4
6   Reading 1: 2
7   Reading 2: 2.5
8   ----

我想拥有的是这样的:

target = pd.DataFrame({"Time":["21/12/2017 11:12:48","21/12/2017 11:13:48"],"Port":["Port:4","Port:4"],"Field1":['Reading 1: 1','Reading 1: 2'],"Field2":['','Reading 2: 2.5']})
target

   Field1         Feild2           Port      Time
0  Reading 1: 1                    Port:4    21/12/2017 11:12:48
1  Reading 1: 2   Reading 2: 2.5   Port:4    21/12/2017 11:13:48

3 个答案:

答案 0 :(得分:2)

显然它确实依赖于数据,但您可以尝试:

#check separator
m = test['Messy'].str.startswith('----')
#create groups
test['g'] = m.cumsum()
#filter separator rows
df = test[~m].copy()
#count groups
df['c'] = df.groupby('g').cumcount()
print (df)
                 Messy  g  c
0  21/12/2017 11:12:48  0  0
1               Port:4  0  1
2         Reading 1: 1  0  2
4  21/12/2017 11:13:48  1  0
5               Port:4  1  1
6         Reading 1: 2  1  2
7       Reading 2: 2.5  1  3

#pivoting
df = df.pivot('g','c','Messy')
print (df)
c                    0       1             2               3
g                                                           
0  21/12/2017 11:12:48  Port:4  Reading 1: 1            None
1  21/12/2017 11:13:48  Port:4  Reading 1: 2  Reading 2: 2.5

答案 1 :(得分:2)

以下是一个解决方案。你的数据很混乱。此方法假定您的所有数据都以4列为一组进行组织。

import numpy as np, pandas as pd

test = pd.DataFrame({"Messy":["21/12/2017 11:12:48","Port:4","Reading 1: 1","----","21/12/2017 11:13:48","Port:4","Reading 1: 2","Reading 2: 2.5","----"]})

lst = [np.hstack(np.hstack(i)) for i in zip((test.iloc[4*i:4*i+4].values \
                               for i in range(int(len(test.index)/4))))]

df = pd.DataFrame(lst, columns=['Date', 'Port', 'Field1', 'Field2']).replace({'----': ''})

#                   Date    Port        Field1          Field2
# 0  21/12/2017 11:12:48  Port:4  Reading 1: 1                
# 1  21/12/2017 11:13:48  Port:4  Reading 1: 2  Reading 2: 2.5

答案 2 :(得分:2)

假设您最多有4列且所有记录的顺序相同,则使用logging.basicConfig(level=logging.INFO)reio是另一种解决方案:

pandas

您可以通过在import pandas as pd import io import re d = {"Messy":["21/12/2017 11:12:48","Port:4","Reading 1: 1","----", "21/12/2017 11:13:48","Port:4","Reading 1: 2","Reading 2: 2.5", "----"]} test = pd.read_csv(io.StringIO(re.sub(r',----,?','\n', ','.join(d['Messy']))), names=['Time','Port','Field1','Field2']) In [13]: print(test) Out[13]: Time Port Field1 Field2 0 21/12/2017 11:12:48 Port:4 Reading 1: 1 NaN 1 21/12/2017 11:13:48 Port:4 Reading 1: 2 Reading 2: 2.5 功能的名称list属性中添加更多列名来扩展此解决方案,例如如果数据中的记录中最多有10列,则只需将它们映射到10个列名称。