我已经在各种锦标赛中获得了高尔夫球手及其高尔夫球赛的数据框(参见下面发布的df头词典)。我需要一种快速的计算方式,对于玩家玩的每一轮,他的平均笔画获得了#39; (SG)前n天,其中n是我决定的任何值。我会知道如何通过将数据帧转换为列表列表并迭代来实现这一点,但这将非常缓慢。理想情况下,我希望Pandas df中的额外列可以追溯到过去100天内玩家的平均SG'。
这就是我们正在使用的(数据帧头的词典):
{'Avg SG Player': {0: 0.4564491861877877,
1: -0.170952417298073,
2: 1.509033309098962,
3: -1.7298114700775877,
4: 1.7856746598995106},
'Avg Score': {0: 69.53846153846153,
1: 69.53846153846153,
2: 69.53846153846153,
3: 69.53846153846153,
4: 69.53846153846153},
'Date': {0: Timestamp('2003-01-23 00:00:00'),
1: Timestamp('2003-01-23 00:00:00'),
2: Timestamp('2003-01-23 00:00:00'),
3: Timestamp('2003-01-23 00:00:00'),
4: Timestamp('2003-01-23 00:00:00')},
'Field Strength': {0: 0.08871540761770776,
1: 0.08871540761770776,
2: 0.08871540761770776,
3: 0.08871540761770776,
4: 0.08871540761770776},
'Ind': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4},
'Overall SG': {0: 7.627176946079241,
1: 5.627176946079241,
2: 5.627176946079241,
3: 4.627176946079241,
4: 4.627176946079241},
'Player': {0: 'Harrison Frazar',
1: 'John Huston',
2: 'David Toms',
3: 'James H. McLean',
4: 'Luke Donald'},
'Round': {0: 'R1', 1: 'R1', 2: 'R1', 3: 'R1', 4: 'R1'},
'Rounds Played': {0: 270, 1: 209, 2: 228, 3: 28, 4: 221},
'SG on Field': {0: 7.538461538461533,
1: 5.538461538461533,
2: 5.538461538461533,
3: 4.538461538461533,
4: 4.538461538461533},
'Score': {0: 62, 1: 64, 2: 64, 3: 65, 4: 65},
'Tourn-Round': {0: '2003 Phoenix OpenR1',
1: '2003 Phoenix OpenR1',
2: '2003 Phoenix OpenR1',
3: '2003 Phoenix OpenR1',
4: '2003 Phoenix OpenR1'},
'Tournament': {0: '2003 Phoenix Open',
1: '2003 Phoenix Open',
2: '2003 Phoenix Open',
3: '2003 Phoenix Open',
4: '2003 Phoenix Open'}}
EDITED
Dataframe基本上是这样的:
玩家 - 获得的圆形笔画日期(当天)
T Woods - 01-01-2010 - 5.4
R McIlroy - 01-01-2010 - 3.8
T Woods - 02-01-2010 - 0.4
等
有350,000行。我需要的是一个额外的列,给出了有关玩家在本轮日期前n(比如说100天)获得的平均击球次数。
所以如果下一行是:
Player-Date-Strokes获得(当天)
T Woods - 20-01-2018 - 3.2
我希望第四个(新)列,称之为“100天平均值”,为2.9((5.4 + 0.4)/ 2),因为这是Tiger前两轮的平均值在定义的时间范围内。
谢谢,
汤姆
答案 0 :(得分:1)
这应该有效:
n = 10000
start_date = pd.to_datetime('today') - pd.Timedelta(n, unit='D')
df[df['Date'] >= start_date].groupby('Player')['Avg SG Player'].mean()
如果您想输入开始日期和结束日期:
start_date = pd.to_datetime('2005-12-01')
end_date = pd.to_datetime('2015-12-01')
df[(df['Date'] >= start_date) & (df['Date'] <= end_date)].groupby('Player')['Avg SG Player'].mean()