Spark:我想爆炸多个列并合并为单列,列名作为单独的行。
Input data:
+-----------+-----------+-----------+
| ASMT_ID | WORKER | LABOR |
+-----------+-----------+-----------+
| 1 | A1,A2,A3| B1,B2 |
+-----------+-----------+-----------+
| 2 | A1,A4 | B1 |
+-----------+-----------+-----------+
Expected Output:
+-----------+-----------+-----------+
| ASMT_ID |WRK_CODE |WRK_DETL |
+-----------+-----------+-----------+
| 1 | A1 | WORKER |
+-----------+-----------+-----------+
| 1 | A2 | WORKER |
+-----------+-----------+-----------+
| 1 | A3 | WORKER |
+-----------+-----------+-----------+
| 1 | B1 | LABOR |
+-----------+-----------+-----------+
| 1 | B2 | LABOR |
+-----------+-----------+-----------+
| 2 | A1 | WORKER |
+-----------+-----------+-----------+
| 2 | A4 | WORKER |
+-----------+-----------+-----------+
| 2 | B1 | LABOR |
+-----------+-----------+-----------+
答案 0 :(得分:1)
可能不是最好的情况,但只需要几个explode
和unionAll
。
import org.apache.spark.sql.functions._
df1.show
+-------+--------+-----+
|ASMT_ID| WORKER|LABOR|
+-------+--------+-----+
| 1|A1,A2,A3|B1,B2|
| 2| A1,A4| B1|
+-------+--------+-----+
df1.cache
val workers = df1.drop("LABOR")
.withColumn("WRK_CODE" , explode(split($"WORKER" , ",") ) )
.withColumn("WRK_DETL", lit("WORKER"))
.drop("WORKER")
val labors = df1.drop("WORKER")
.withColumn("WRK_CODE" , explode(split($"LABOR", ",") ) )
.withColumn("WRK_DETL", lit("LABOR") )
.drop("LABOR")
workers.unionAll(labors).orderBy($"ASMT_ID".asc , $"WRK_CODE".asc).show
+-------+--------+--------+
|ASMT_ID|WRK_CODE|WRK_DETL|
+-------+--------+--------+
| 1| A1| WORKER|
| 1| A2| WORKER|
| 1| A3| WORKER|
| 1| B1| LABOR|
| 1| B2| LABOR|
| 2| A1| WORKER|
| 2| A4| WORKER|
| 2| B1| LABOR|
+-------+--------+--------+
答案 1 :(得分:-1)
另一种解决方案。
from pyspark.sql.functions import explode, lit
df = spark.createDataFrame([
("1", ["A1","A2", "A3"], ["B1", "B2"]),
("2", ["A1","A4"], ["B1"])],
['ASMT_ID', 'WORKER', 'LABOR'])
df.select('ASMT_ID', explode('WORKER').alias('WRK_CODE'), lit('WORKDER').alias('WRK_DETL') )\
.unionAll(df.select('ASMT_ID', explode('LABOR').alias('WRK_CODE'), lit('LABOR').alias('WRK_DETL')))\
.orderBy(['ASMT_ID', 'WRK_CODE']).show()
+-------+--------+--------+
|ASMT_ID|WRK_CODE|WRK_DETL|
+-------+--------+--------+
| 1| A1| WORKDER|
| 1| A2| WORKDER|
| 1| A3| WORKDER|
| 1| B1| LABOR|
| 1| B2| LABOR|
| 2| A1| WORKDER|
| 2| A4| WORKDER|
| 2| B1| LABOR|
+-------+--------+--------+