我有一个默认的示例字典,如下所示:
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
我使用一个函数,使用Pearson相关系数返回字典中最相似的人,如下所示:
from math import sqrt
def sim_pearson(prefs,p1,p2):
# lista na zaednichki tochki
si={}
for item in prefs[p1]:
if item in prefs[p2]: si[item]=1
# najdi go brojot na elementi
n=len(si)
# ako nemaat zaednichki tochki vrati 0
if n==0: return 0
# dodadi gi site
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
# sumiraj gi kvadratite
sum1Sq=sum([pow(prefs[p1][it],2) for it in si])
sum2Sq=sum([pow(prefs[p2][it],2) for it in si])
# sumiraj gi proizvodite
pSum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
# presmetka na Pirsonoviot koeficient
num=pSum-(sum1*sum2/n)
den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den==0: return 0
r=num/den
return r
它有效。例如,对于调用print sim_pearson(critics, 'Toby', 'Lisa Rose')
,我得到系数0.991240707162。
但是,当我用我的词典尝试相同的功能时:
tests = {'dzam': {'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj3AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiMAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiBAgw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjtAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj_AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiIAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj9AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiqAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjzAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxikAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiaAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj1AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjxAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiYAgw': 5.0},
'kex': {'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj3AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiMAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiBAgw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjtAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj_AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiIAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj9AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiqAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjzAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxikAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiaAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj1AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjxAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiYAgw': 5.0},
'rokoko': {'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj3AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiMAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiBAgw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjtAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj_AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiIAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj9AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiqAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjzAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxikAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiaAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj1AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjxAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiYAgw': 5.0},
'test@example.com': {'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj3AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiMAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiBAgw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjtAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj_AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiIAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj9AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiqAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjzAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxikAgw': 3.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiaAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxj1AQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjxAQw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiYAgw': 5.0},
'seljak': {'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxiKAgw': 5.0,
'ag1yYW5kb20tcmFuZG9tcg8LEghib29rbWFyaxjvAQw': 1.0, }}
我总是得到1.0,不管我在词典中有匹配,为什么会这样?
顺便说一下,我正在使用哈希,所以我的词典必须有这么长的字符串。 :)
答案 0 :(得分:1)
你可能被躲在眼睛上的长键愚弄了,这些长串不同。
尝试将所有值设置为测试0
中的'seljak'
,然后与其进行关联。您会看到0
相关性:
print sim_pearson(tests, 'test@example.com', 'seljak')
将测试'seljak'
的最后一个值更改为1,您将看到重新运行脚本的负相关。