坐标为

时间:2018-02-11 19:12:39

标签: python pandas numpy

我有一个DataFrame,其列具有不同的坐标,在其他列表中聚集在一起,如下所示:

    name    OBJECTID    geometry
0    NaN           1    ['-80.304852,-3.489302,0.0','-80.303087,-3.490214,0.0',...]

1    NaN           2    ['-80.27494,-3.496571,0.0',...]

2    NaN           3    ['-80.267987,-3.500003,0.0',...]

我想分隔值并删除' 0.0',但将它们保留在列表中以将它们添加到字典中的某个键,如下所示:

    name    OBJECTID    geometry
0    NaN           1    [[-80.304852, -3.489302],[-80.303087, -3.490214],...]

1    NaN           2    [[-80.27494, -3.496571],...]

2    NaN           3    [[-80.267987, -3.500003],...]

这是我的代码,在我试图在for循环中将它们分开的地方不起作用:

import panda as pd
import numpy as np

r = pd.read_csv('data.csv') 
rloc = np.asarray(r['geometry'])

r['latitude'] = np.zeros(r.shape[0],dtype= r['geometry'].dtype)
r['longitude'] = np.zeros(r.shape[0],dtype= r['geometry'].dtype)

# Separating the latitude and longitude values form each string.
for i in range(0, len(rloc)):
    for j in range(0, len(rloc[i])):
        coord = rloc[i][j].split(',')
        r['longitude'] = coord[0]
        r['latitude'] = coord[1]

r = r[['OBJECTID', 'latitude', 'longitude', 'name']]

编辑:结果并不好,因为它只为每一个打印出一个值。

  OBJECTID  latitude    longitude   name
0        1  -3.465566   -80.151633  NaN
1        2  -3.465566   -80.151633  NaN
2        3  -3.465566   -80.151633  NaN

奖金问题:我如何在元组中添加所有这些经度和纬度值以与geopy一起使用?像这样:

r['location'] = (r['latitude], r['longitude'])

因此,几何列将如下所示:

geometry
[(-80.304852, -3.489302),(-80.303087, -3.490214),...]

[(-80.27494, -3.496571),...]

[(-80.267987, -3.500003),...]

编辑:

数据最初看起来像这样(每行):

<LineString><coordinates>-80.304852,-3.489302,0.0 -80.303087,-3.490214,0.0 ...</coordinates></LineString>

我使用此代码修改了正则表达式:

geo = np.asarray(r['geometry']); 
geo = [re.sub(re.compile('<.*?>'), '', string) for string in geo]

然后我把它放在一个数组中:

rv = [geo[i].split() for i in range(0,len(geo))]
r['geometry'] = np.asarray(rv)

当我调用r [&#39; geometry&#39;]时,输出为:

0    [-80.304852,-3.489302,0.0, -80.303087,-3.49021...
1    [-80.27494,-3.496571,0.0, -80.271963,-3.49266,...
2    [-80.267987,-3.500003,0.0, -80.267845,-3.49789...
Name: geometry, dtype: object

r['geometry'][0]是:

 ['-80.304852,-3.489302,0.0',
 '-80.303087,-3.490214,0.0',
 '-80.302131,-3.491878,0.0',
 '-80.300763,-3.49213,0.0']

2 个答案:

答案 0 :(得分:2)

带有玩具数据集输入的pandas解决方案:

df = pd.read_csv("test.txt")
   name  OBJECTID                                           geometry
0   NaN         1  ['-80.3,-3.4,0.0','-80.3,-3.9,0.0','-80.3,-3.9...
1   NaN         2  ['80.2,-4.4,0.0','-81.3,2.9,0.0','-80.7,-3.2,0...
2   NaN         3  ['-80.1,-3.2,0.0','-80.8,-2.9,0.0','-80.1,-1.9...

现在转换为经度 - 纬度对的列:

#regex extraction of longitude latitude pairs
pairs = "(-?\d+.\d+,-?\d+.\d+)"
s = df["geometry"].str.extractall(pairs)
#splitting string into two parts, creating two columns for longitude latitude
s = s[0].str.split(",", expand = True)  
#converting strings into float numbers - is this even necessary?
s[[0, 1]] = s[[0, 1]].apply(pd.to_numeric)
#creating a tuple from longitude/latitude columns
s["lat_long"] = list(zip(s[0], s[1]))
#placing the tuples as columns in original dataframe 
df = pd.concat([df, s["lat_long"].unstack(level = -1)], axis = 1)

玩具数据集的输出:

   name  OBJECTID                                           geometry  \
0   NaN         1  ['-80.3,-3.4,0.0','-80.3,-3.9,0.0','-80.3,-3.9...   
1   NaN         2  ['80.2,-4.4,0.0','-81.3,2.9,0.0','-80.7,-3.2,0...   
2   NaN         3  ['-80.1,-3.2,0.0','-80.8,-2.9,0.0','-80.1,-1.9...   

               0              1              2  
0  (-80.3, -3.4)  (-80.3, -3.9)  (-80.3, -3.9)  
1   (80.2, -4.4)   (-81.3, 2.9)  (-80.7, -3.2)  
2  (-80.1, -3.2)  (-80.8, -2.9)  (-80.1, -1.9)  

或者,您可以将一列中的元组组合为一个列表:

s["lat_long"] = list(zip(s[0], s[1]))
#placing the tuples as a list into a column of the original dataframe 
df["lat_long"] = s.groupby(level=[0])["lat_long"].apply(list)

立即输出:

   name  OBJECTID                                           geometry  \
0   NaN         1  ['-80.3,-3.4,0.0','-80.3,-3.9,0.0','-80.3,-3.9...   
1   NaN         2  ['80.2,-4.4,0.0','-81.3,2.9,0.0','-80.7,-3.2,0...   
2   NaN         3  ['-80.1,-3.2,0.0','-80.8,-2.9,0.0','-80.1,-1.9...   

                                        lat_long  
0  [(-80.3, -3.4), (-80.3, -3.9), (-80.3, -3.9)]  
1    [(80.2, -4.4), (-81.3, 2.9), (-80.7, -3.2)]  
2  [(-80.1, -3.2), (-80.8, -2.9), (-80.1, -1.9)]  

答案 1 :(得分:1)

在您的代码中,您实际上是将最后一次迭代的经度和纬度值分配给完整列。您也可以将字符串转换为float:

if let jsSourcePath = Bundle.main.path(forResource: "scripted", ofType: "js") {
        do {
            let jsSourceContents = try String(contentsOfFile: jsSourcePath)
            self.webby.evaluateJavaScript(jsSourceContents)
        }
        catch {
            print(error.localizedDescription)
        }
    }

寻求奖金:)

# Separating the latitude and longitude values form each string.
for i in range(0, len(rloc)):
    r['longitude'][i] = []
    r['latitude'][i] = []
    for j in range(0, len(rloc[i])):
        coord = rloc[i][j].split(',')
        r['longitude'][i].append(float(coord[0]))
        r['latitude'][i].append(float(coord[1]))