我是TensorFlow的新手,目前正在使用该库编写我的第一个CNN。以前我使用过keras并检查使用了model.summary()函数的图层的输出尺寸。 如何检查TensorFlow中图层的输出尺寸?这是我的模特:
generator(input, random_dim, is_train, reuse=False):
c4, c8, c16, c32, c64 = 512, 256, 128, 64, 32 # no of nodes in each conv2d layer
s4 = 4
output_dim = CHANNEL # B/W image for RGB channel = 3
with tf.variable_scope('gen') as scope:
if reuse:
scope.reuse_variables()
w1 = tf.get_variable('w1', shape=[random_dim, s4 * s4 * c4], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
b1 = tf.get_variable('b1', shape=[c4 * s4 * s4], dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
flat_conv1 = tf.add(tf.matmul(input, w1), b1, name='flat_conv1')
conv1 = tf.reshape(flat_conv1, shape=[-1, s4, s4, c4], name='conv1')
bn1 = tf.contrib.layers.batch_norm(conv1, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn1')
act1 = tf.nn.relu(bn1, name='act1')
# 8*8*256
conv2 = tf.layers.conv2d_transpose(act1, c8, kernel_size=[3, 3], strides=[2, 2], padding="SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv2')
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn2')
act2 = tf.nn.relu(bn2, name='act2')
# 16*16*128
conv3 = tf.layers.conv2d_transpose(act2, c16, kernel_size=[3, 3], strides=[2, 2], padding="SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv3')
bn3 = tf.contrib.layers.batch_norm(conv3, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn3')
act3 = tf.nn.relu(bn3, name='act3')
# 32*32*64
conv4 = tf.layers.conv2d_transpose(act3, c32, kernel_size=[3, 3], strides=[2, 2], padding="SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv4')
bn4 = tf.contrib.layers.batch_norm(conv4, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn4')
act4 = tf.nn.relu(bn4, name='act4')
# 64*64*32
conv5 = tf.layers.conv2d_transpose(act4, c64, kernel_size=[3, 3], strides=[2, 2], padding="SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv5')
bn5 = tf.contrib.layers.batch_norm(conv5, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn5')
act5 = tf.nn.relu(bn5, name='act5')
#128*128*3
conv6 = tf.layers.conv2d_transpose(act5, output_dim, kernel_size=[3, 3], strides=[2, 2], padding="SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv6')
# bn6 = tf.contrib.layers.batch_norm(conv6, is_training=is_train, epsilon=1e-5, decay = 0.9, updates_collections=None, scope='bn6')
#BATCH NORM IN EVERY LAYER EXCEPT LAST !
act6 = tf.nn.tanh(conv6, name='act6')
return act6
使用python 3
答案 0 :(得分:1)
在编译时(未知维度将包含None
或?
值):
a = ... # Your tensor
print(a.shape.dims)
在运行时(未知维度将根据输入数据计算):
sess = tf.Session()
a = ... # Your tensor
feed_dict = {...} # Values required to compute a
shape_op = tf.shape(a)
shape_res = sess.run(shape_op, feed_dict=feed_dict)
print(shape_res)
干杯