import pandas as pd
times = pd.to_datetime(pd.Series(['2014-07-4',
'2014-07-15','2014-08-25','2014-08-25','2014-09-10','2014-09-15']))
strategypercentage = [0.01, 0.02, -0.03, 0.04,0.5,-0.3]
df = pd.DataFrame({'Strategy': strategypercentage}, index=times)
##lambda x: ((1+x).cumprod()-1)
df.resample("1M").agg({'Strategy' : ['sum','prod']})
数据框包括日期和每日百分比变化,我如何计算每月百分比变化复合(看起来像((1 + x).cumprod() - 1)) - 但如何用agg实现? 预期结果: enter image description here
答案 0 :(得分:0)
似乎你需要:
df['new'] = df.resample("1M")['Strategy'].apply(lambda x: ((1+x).cumprod()-1))
print (df)
Strategy new
2014-07-04 0.01 0.0100
2014-07-15 0.02 0.0302
2014-08-25 -0.03 -0.0300
2014-08-25 0.04 0.0088
2014-09-10 0.50 0.5000
2014-09-15 -0.30 0.0500