我有呼吸(呼吸)信号和25 Hz的采样频率,需要检测时间刻度上最低呼吸频率的位置,这应该告诉我实际上该人何时昏昏欲睡。经典形式的傅里叶变换并没有给我很多有用的信息。因此,澄清一下:测量时间应在x轴上,呼吸频率应在y轴上。然后,我想,较低的信号幅度将显示呼吸较慢。应该如何处理信号以我需要的方式绘制它?
答案 0 :(得分:2)
此代码的所有学分均归Star Strider所有。
D = load('respiratory.txt');
Fs = 25; % Sampling Frequency (Hz)
Fn = Fs/2; % Nyquist Frequency
Ts = 1/Fs; % Sampling Time (sec)
L = numel(D);
t = linspace(0, L, L)*Ts; % Time Vector (sec)
figure(1)
plot(t, D)
grid
% axis([0 60 -850 -750])
axis([xlim -850 -750])
xlabel('Time')
ylabel('Amplitude')
FTD = fft(D-mean(D))/L; % Fourier Transform
Fv = linspace(0, 1, fix(L/2)+1)*Fn; % Frequency Vector
Iv = 1:numel(Fv); % Index Vector
figure(2)
plot(Fv, abs(FTD(Iv))*2)
grid
axis([0 2.5 ylim])
xlabel('Frequency (Hz)')
ylabel('Amplitude')
Wp = [0.35 0.65]/Fn; % Passband Frequency (Normalised)
Ws = [0.30 0.75]/Fn; % Stopband Frequency (Normalised)
Rp = 1; % Passband Ripple (dB)
Rs = 50; % Stopband Ripple (dB)
[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs); % Filter Order
[z,p,k] = cheby2(n,Rs,Ws); % Filter Design, Sepcify Bandpass
[sos,g] = zp2sos(z,p,k); % Convert To Second-Order-Section For Stability
figure(3)
freqz(sos, 2^16, Fs) % Filter Bode Plot
D_filtered = filtfilt(sos, g, D); % Filter Signal
[pks,locs] = findpeaks(D_filtered, 'MinPeakDist',40);
figure(4)
plot(t, D_filtered)
hold on
plot(t(locs), pks, '^r')
hold off
grid
% axis([0 60 ylim])
axis([0 60 -15 15])
xlabel('Time')
ylabel('Amplitude')
tdif = diff([0 t(locs)]); % Time Difference Between Peaks (sec)
Dfrq = 60./tdif; % Frequency (Respirations/Minute)
figure(5)
plot(t(locs), Dfrq)
grid
axis([xlim 10 40])
xlabel('Time (sec)')
ylabel('Frequency (minute^{-1})')