让复制经纪人与消费者合作似乎非常复杂:似乎在停止某些经纪人时,一些消费者不再工作,而当特定经纪人再次上涨时,那些没有经营者的消费者工作收到所有"失踪"消息。
我正在使用2经纪人场景。创建了一个像这样的复制主题:
$KAFKA_HOME/bin/kafka-topics.sh --create \
--zookeeper localhost:2181 \
--replication-factor 2 \
--partitions 3 \
--topic replicated_topic
来自服务器配置的摘录如下所示(注意除了端口,代理ID和日志目录之外的两个服务器都是相同的):
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0
############################# Socket Server Settings #############################
# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
# FORMAT:
# listeners = listener_name://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
listeners=PLAINTEXT://:9092
# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured. Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092
# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3
# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
log.dirs=/tmp/kafka-logs0
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1
############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3.
offsets.topic.replication.factor=2
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168
# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000
############################# Group Coordinator Settings #############################
# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
让我们使用2个经纪人来描述我的主题:
Topic:replicated_topic PartitionCount:3 ReplicationFactor:2 Configs:
Topic: replicated_topic Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: replicated_topic Partition: 1 Leader: 0 Replicas: 0,1 Isr: 1,0
Topic: replicated_topic Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0
让我们看看消费者的代码: 消费者(impl Callable)
@Override
public Void call() throws Exception {
final Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
bootstrapServers);
props.put(ConsumerConfig.GROUP_ID_CONFIG,
groupId);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
IntegerDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class.getName());
final Consumer<Integer, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Collections.singletonList(topicName));
ConsumerRecords<Integer, String> records = null;
while (!Thread.currentThread().isInterrupted()) {
records = consumer.poll(1000);
if (records.isEmpty()) {
continue;
}
records.forEach(rec -> LOGGER.debug("{}@{} consumed from topic {}, partition {} pair ({},{})",
ConsumerCallable.class.getSimpleName(), hashCode(), rec.topic(), rec.partition(), rec.key(), rec.value()));
consumer.commitAsync();
}
consumer.close();
return null;
}
制作人和主要代码:
private static final String TOPIC_NAME = "replicated_topic";
private static final String BOOTSTRAP_SERVERS = "localhost:9092, localhost:9093";
private static final Logger LOGGER = LoggerFactory.getLogger(Main.class);
public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();
executor.submit(new ConsumerCallable(TOPIC_NAME, BOOTSTRAP_SERVERS, "group1"));
executor.submit(new ConsumerCallable(TOPIC_NAME, BOOTSTRAP_SERVERS, "group2"));
executor.submit(new ConsumerCallable(TOPIC_NAME, BOOTSTRAP_SERVERS, "group3"));
try (Producer<Integer, String> producer = createProducer()) {
Scanner scanner = new Scanner(System.in);
String line = null;
LOGGER.debug("Please enter 'k v' on the command line to send to Kafka or 'quit' to exit");
while (scanner.hasNextLine()) {
line = scanner.nextLine();
if (line.trim().toLowerCase().equals("quit")) {
break;
}
String[] elements = line.split(" ");
Integer key = Integer.parseInt(elements[0]);
String value = elements[1];
producer.send(new ProducerRecord<>(TOPIC_NAME, key, value));
producer.flush();
}
}
executor.shutdownNow();
}
private static Producer<Integer, String> createProducer() {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
BOOTSTRAP_SERVERS);
props.put(ProducerConfig.CLIENT_ID_CONFIG, "KafkaExampleProducer");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
IntegerSerializer.class.getName());
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
return new KafkaProducer<>(props);
}
现在让我们看看行为:
kafka主题的输出:
Topic:replicated_topic PartitionCount:3 ReplicationFactor:2 Configs:
Topic: replicated_topic Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: replicated_topic Partition: 1 Leader: 0 Replicas: 0,1 Isr: 1,0
Topic: replicated_topic Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0
节目输出:
12:52:30.460 DEBUG Main - Please enter 'k v' on the command line to send to Kafka or 'quit' to exit
1 u
12:52:35.555 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 0 pair (1,u)
12:52:35.559 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 0 pair (1,u)
12:52:35.559 DEBUG ConsumerCallable - ConsumerCallable@186743616 consumed from topic replicated_topic, partition 0 pair (1,u)
2 d
12:52:38.096 DEBUG ConsumerCallable - ConsumerCallable@186743616 consumed from topic replicated_topic, partition 2 pair (2,d)
12:52:38.098 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 2 pair (2,d)
12:52:38.100 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 2 pair (2,d)
由于消费者在不同的群组中,所有消息都被广播给他们,一切都很好。
2打倒经纪人2:
描述主题:
Topic:replicated_topic PartitionCount:3 ReplicationFactor:2 Configs:
Topic: replicated_topic Partition: 0 Leader: 0 Replicas: 1,0 Isr: 0
Topic: replicated_topic Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0
Topic: replicated_topic Partition: 2 Leader: 0 Replicas: 1,0 Isr: 0
节目输出:
3 t
12:57:03.898 DEBUG ConsumerCallable - ConsumerCallable@186743616 consumed from topic replicated_topic, partition 1 pair (3,t)
4 p
12:57:06.058 DEBUG ConsumerCallable - ConsumerCallable@186743616 consumed from topic replicated_topic, partition 1 pair (4,p)
现在只有1个消费者接收数据。让我们再次提起经纪人2: 现在其他2位消费者收到了缺失的数据:
12:57:50.863 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 1 pair (3,t)
12:57:50.863 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 1 pair (4,p)
12:57:50.870 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 1 pair (3,t)
12:57:50.870 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 1 pair (4,p)
现在只有2位消费者收到数据:
5 c
12:59:13.718 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 2 pair (5,c)
12:59:13.737 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 2 pair (5,c)
6 s
12:59:16.437 DEBUG ConsumerCallable - ConsumerCallable@1361430455 consumed from topic replicated_topic, partition 2 pair (6,s)
12:59:16.438 DEBUG ConsumerCallable - ConsumerCallable@1241910294 consumed from topic replicated_topic, partition 2 pair (6,s)
如果我把它带到另一个消费者手中,也会收到丢失的数据。
我的观点(对不起大写,但我试图捕捉上下文),是如何确保无论我停止什么经纪人,消费者都会正常工作? (通常接收所有消息)?
PS:我尝试设置offsets.topic.replication.factor = 2或3,但它没有任何效果。
答案 0 :(得分:2)
如果没有,则不会忽略到该代理的消息。活动代理的数量小于配置的副本数量。每当新的Kafka代理加入集群时,数据都会复制到该节点。 https://stackoverflow.com/a/38998062/6274525
因此,当您的经纪人2关闭时,消息仍会被推送到另一个活着的经纪人,因为有1个实时经纪人,复制因子是2.因为您的其他2个消费者订阅了经纪人2(已经关闭),他们是无法消费。
当您的经纪人2再次启动时,数据会复制到此新节点,因此连接到此节点的消费者会收到该消息(由您引用为&#34;缺少&#34;消息)。
答案 1 :(得分:0)
这是我在3节点Kafka群集和3复制Kafka主题上看到的行为
如果您降低1个非领导者的节点-那么您就很好了,消费者继续努力
如果您降低领导者节点,那么消费者可能会也可能不会工作(工作=继续收到发布)
这是一个问题。我正在使用Kafka 1.1.0。
答案 2 :(得分:0)
另外,如果您杀死了领导者0并发现Consumer不起作用,您还将注意到新的领导者现在是1(或2)。
您带回经纪人“ 0”,并观察到消费者收到“丢失”消息
现在放下新的领导者(1 OR 2),消费者仍然可以正常工作。所以问题似乎正在杀死最初的领导者。
将进行更多研究并获得回报
答案 3 :(得分:0)
因此出现的模式是,如果您杀死启动集群时启动的FIRST代理,则使用者将停止接收消息。将测试更多并更新。只要维持法定人数,显然关闭其他经纪商不会影响消费者。
答案 4 :(得分:0)
请确保已将名为offsets.topic.replication.factor
的属性更改为至少3。
此属性用于管理偏移量和使用者交互。启动kafka服务器时,它将自动创建名称为__consumer_offsets
的主题。因此,如果未在本主题中创建副本,那么使用者将无法确定是否有内容被推送到它正在收听的主题中。
链接到此属性的详细信息:https://kafka.apache.org/documentation/#brokerconfigs