我刚刚开始尝试学习pytorch并且发现它令人沮丧,无论它如何被宣传:)
这里我运行一个简单的回归作为实验,但由于每个时代(在训练中)损失似乎没有减少,我必须做错事 - 无论是在训练中还是我如何收集MSE ?
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.utils.data as utils_data
from torch.autograd import Variable
from torch import optim, nn
from torch.utils.data import Dataset
import torch.nn.functional as F
from sklearn.datasets import load_boston
cuda=True
#regular old numpy
boston = load_boston()
x=boston.data
y=boston.target
x.shape
training_samples = utils_data.TensorDataset(x, y)
data_loader = utils_data.DataLoader(training_samples, batch_size=10)
len(data_loader) #number of batches in an epoch
#override this
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#all the layers
self.fc1 = nn.Linear(x.shape[1], 50)
self.drop = nn.Dropout(p=0.2)
self.fc2 = nn.Linear(50, 1)
#
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.drop(x)
x = self.fc2(x)
return x
net=Net()
if cuda:
net.cuda()
print(net)
# create a stochastic gradient descent optimizer
optimizer = optim.Adam(net.parameters())
# create a loss function (mse)
loss = nn.MSELoss()
# create a stochastic gradient descent optimizer
optimizer = optim.Adam(net.parameters())
# create a loss function (mse)
loss = nn.MSELoss()
# run the main training loop
epochs =20
hold_loss=[]
for epoch in range(epochs):
cum_loss=0.
for batch_idx, (data, target) in enumerate(data_loader):
tr_x, tr_y = Variable(data.float()), Variable(target.float())
if cuda:
tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
# Reset gradient
optimizer.zero_grad()
# Forward pass
fx = net(tr_x)
output = loss(fx, tr_y) #loss for this batch
cum_loss += output.data[0]
# Backward
output.backward()
# Update parameters based on backprop
optimizer.step()
hold_loss.append(cum_loss)
#print(epoch+1, cum_loss) #
plt.plot(np.array(hold_loss))