cuda9 +推力sort_by_key与H2D副本重叠(使用流)

时间:2018-02-07 17:48:34

标签: c++ cuda thrust

我想将一个thrust :: sort_by_key操作与主机到设备副本重叠。尽管以cudaStream_t作为参数,我的实验似乎表明thrust :: sort_by_key是一个阻塞操作。下面我附上一个完整的代码示例,其中首先我测量复制数据的时间(来自固定内存),然后我测量执行sort_by_key的时间。最后,我尝试重叠这两个操作。我希望看到sort_by_key操作隐藏的复制时间。相反,我发现重叠操作占用的时间超过了两个独立操作的总和。

有人能看到代码有问题吗?或者我是否误解了对cuda溪流的支持?

B0

以下是在GTX 1080 TI上运行并使用CUDA工具包(V9.0.176)进行编译时获得的结果:

#include <cuda_runtime.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <random>
#include <iostream>
#include <sys/time.h>

int main() {

    // size of arrays
    const int n = 300000000;

    // random number generator
    std::mt19937 rng;

    // key/val on host
    uint32_t * key = new uint32_t[n];
    uint32_t * val = new uint32_t[n];

    // fill key val
    for(int i = 0; i < n; i++) {
        key[i] = rng();
        val[i] = i;
    }

   // key/val on device
   uint32_t * dev_key;
   uint32_t * dev_val;

   // allocate memory on GPU for key/val
   cudaMalloc((void**)&dev_key, n*sizeof(uint32_t));
   cudaMalloc((void**)&dev_val, n*sizeof(uint32_t));

   // copy key/val onto the device
   cudaMemcpy(dev_key, key, n*sizeof(uint32_t), cudaMemcpyHostToDevice);
   cudaMemcpy(dev_val, val, n*sizeof(uint32_t), cudaMemcpyHostToDevice);

   // get thrust device pointers to key/val on device
   thrust::device_ptr<uint32_t> dev_key_ptr = thrust::device_pointer_cast(dev_key);
   thrust::device_ptr<uint32_t> dev_val_ptr = thrust::device_pointer_cast(dev_val);

   // data on host
   uint32_t * data;

   // allocate pinned memory for data on host
   cudaMallocHost((void**)&data, n*sizeof(uint32_t));

   // fill data with random numbers
   for(int i = 0; i < n; i++) {
       data[i] = rng();
   }

   // data on device
   uint32_t * dev_data;

   // allocate memory for data on the device
   cudaMalloc((void**)&dev_data, n*sizeof(uint32_t));

   // for timing
   struct timeval t1, t2;

   // two streams
   cudaStream_t stream1;
   cudaStream_t stream2;

   // create streams
   cudaStreamCreate(&stream1);
   cudaStreamCreate(&stream2);

   for(int i = 0; i < 10; i++) {

       // Copy data into dev_data on stream 1 (nothing happening on stream 2 for now)
       gettimeofday(&t1, NULL);
           cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_copy = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;


       // Sort_by_key on stream 2 (nothing hapenning on stream 1 for now)
       gettimeofday(&t1, NULL);
           thrust::sort_by_key(thrust::cuda::par.on(stream2), dev_key_ptr, dev_key_ptr + n, dev_val_ptr);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_sort = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

       // Overlap both operations
       gettimeofday(&t1, NULL);
           thrust::sort_by_key(thrust::cuda::par.on(stream2), dev_key_ptr, dev_key_ptr + n, dev_val_ptr);
           cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_both = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

       std::cout << "t_copy: " << t_copy << ", t_sort: " << t_sort << ", t_both1: " << t_both << std::endl;

   }

   // clean up
   cudaStreamDestroy(stream1);
   cudaStreamDestroy(stream2);
   cudaFreeHost(data);
   cudaFree(dev_data);
   cudaFree(dev_key);
   cudaFree(dev_val);
   delete [] key;
   delete [] val;

}

此外,使用nvprof进行性能分析表明,所有操作都在两个单独的非默认流中执行。

如果有人能重现这一点,或者建议修复,我将非常感激。

2 个答案:

答案 0 :(得分:1)

推力排序操作进行内存分配&#34;引擎盖#34;。这应该可以使用nvprof --print-api-trace ...发现 - 您应该看到与每种排序相关联的cudaMalloc操作。此设备内存分配正在同步,可能会阻止预期的重叠。如果您想解决此问题,可以使用thrust custom allocator进行探索。

这是一个有效的例子,大量借鉴上述链接:

$ cat t44.cu
#include <cuda_runtime.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <random>
#include <iostream>
#include <sys/time.h>
#include <thrust/system/cuda/vector.h>
#include <thrust/system/cuda/execution_policy.h>
#include <thrust/host_vector.h>
#include <thrust/generate.h>
#include <thrust/pair.h>
#include <cstdlib>
#include <iostream>
#include <map>
#include <cassert>


// This example demonstrates how to intercept calls to get_temporary_buffer
// and return_temporary_buffer to control how Thrust allocates temporary storage
// during algorithms such as thrust::sort. The idea will be to create a simple
// cache of allocations to search when temporary storage is requested. If a hit
// is found in the cache, we quickly return the cached allocation instead of
// resorting to the more expensive thrust::cuda::malloc.
//
// Note: this implementation cached_allocator is not thread-safe. If multiple
// (host) threads use the same cached_allocator then they should gain exclusive
// access to the allocator before accessing its methods.


// cached_allocator: a simple allocator for caching allocation requests
class cached_allocator
{
  public:
    // just allocate bytes
    typedef char value_type;

    cached_allocator() {}

    ~cached_allocator()
    {
      // free all allocations when cached_allocator goes out of scope
      free_all();
    }

    char *allocate(std::ptrdiff_t num_bytes)
    {
      char *result = 0;

      // search the cache for a free block
      free_blocks_type::iterator free_block = free_blocks.find(num_bytes);

      if(free_block != free_blocks.end())
      {
        std::cout << "cached_allocator::allocator(): found a hit" << std::endl;

        // get the pointer
        result = free_block->second;

        // erase from the free_blocks map
        free_blocks.erase(free_block);
      }
      else
      {
        // no allocation of the right size exists
        // create a new one with cuda::malloc
        // throw if cuda::malloc can't satisfy the request
        try
        {
          std::cout << "cached_allocator::allocator(): no free block found; calling cuda::malloc" << std::endl;

          // allocate memory and convert cuda::pointer to raw pointer
          result = thrust::cuda::malloc<char>(num_bytes).get();
        }
        catch(std::runtime_error &e)
        {
          throw;
        }
      }

      // insert the allocated pointer into the allocated_blocks map
      allocated_blocks.insert(std::make_pair(result, num_bytes));

      return result;
    }

    void deallocate(char *ptr, size_t n)
    {
      // erase the allocated block from the allocated blocks map
      allocated_blocks_type::iterator iter = allocated_blocks.find(ptr);
      std::ptrdiff_t num_bytes = iter->second;
      allocated_blocks.erase(iter);

      // insert the block into the free blocks map
      free_blocks.insert(std::make_pair(num_bytes, ptr));
    }

  private:
    typedef std::multimap<std::ptrdiff_t, char*> free_blocks_type;
    typedef std::map<char *, std::ptrdiff_t>     allocated_blocks_type;

    free_blocks_type      free_blocks;
    allocated_blocks_type allocated_blocks;

    void free_all()
    {
      std::cout << "cached_allocator::free_all(): cleaning up after ourselves..." << std::endl;

      // deallocate all outstanding blocks in both lists
      for(free_blocks_type::iterator i = free_blocks.begin();
          i != free_blocks.end();
          ++i)
      {
        // transform the pointer to cuda::pointer before calling cuda::free
        thrust::cuda::free(thrust::cuda::pointer<char>(i->second));
      }

      for(allocated_blocks_type::iterator i = allocated_blocks.begin();
          i != allocated_blocks.end();
          ++i)
      {
        // transform the pointer to cuda::pointer before calling cuda::free
        thrust::cuda::free(thrust::cuda::pointer<char>(i->first));
      }
    }

};




int main() {
    cached_allocator alloc;
    // size of arrays
    const int n = 300000000;

    // random number generator
    std::mt19937 rng;

    // key/val on host
    uint32_t * key = new uint32_t[n];
    uint32_t * val = new uint32_t[n];

    // fill key val
    for(int i = 0; i < n; i++) {
        key[i] = rng();
        val[i] = i;
    }

   // key/val on device
   uint32_t * dev_key;
   uint32_t * dev_val;

   // allocate memory on GPU for key/val
   cudaMalloc((void**)&dev_key, n*sizeof(uint32_t));
   cudaMalloc((void**)&dev_val, n*sizeof(uint32_t));

   // copy key/val onto the device
   cudaMemcpy(dev_key, key, n*sizeof(uint32_t), cudaMemcpyHostToDevice);
   cudaMemcpy(dev_val, val, n*sizeof(uint32_t), cudaMemcpyHostToDevice);

   // get thrust device pointers to key/val on device
   thrust::device_ptr<uint32_t> dev_key_ptr = thrust::device_pointer_cast(dev_key);
   thrust::device_ptr<uint32_t> dev_val_ptr = thrust::device_pointer_cast(dev_val);

   // data on host
   uint32_t * data;

   // allocate pinned memory for data on host
   cudaMallocHost((void**)&data, n*sizeof(uint32_t));

   // fill data with random numbers
   for(int i = 0; i < n; i++) {
       data[i] = rng();
   }

   // data on device
   uint32_t * dev_data;

   // allocate memory for data on the device
   cudaMalloc((void**)&dev_data, n*sizeof(uint32_t));

   // for timing
   struct timeval t1, t2;

   // two streams
   cudaStream_t stream1;
   cudaStream_t stream2;

   // create streams
   cudaStreamCreate(&stream1);
   cudaStreamCreate(&stream2);

   for(int i = 0; i < 10; i++) {

       // Copy data into dev_data on stream 1 (nothing happening on stream 2 for now)
       gettimeofday(&t1, NULL);
           cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_copy = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;


       // Sort_by_key on stream 2 (nothing hapenning on stream 1 for now)
       gettimeofday(&t1, NULL);
           thrust::sort_by_key(thrust::cuda::par(alloc).on(stream2), dev_key_ptr, dev_key_ptr + n, dev_val_ptr);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_sort = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

       // Overlap both operations
       gettimeofday(&t1, NULL);
           thrust::sort_by_key(thrust::cuda::par(alloc).on(stream2), dev_key_ptr, dev_key_ptr + n, dev_val_ptr);
           cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
           cudaDeviceSynchronize();
       gettimeofday(&t2, NULL);
       double t_both = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

       std::cout << "t_copy: " << t_copy << ", t_sort: " << t_sort << ", t_both1: " << t_both << std::endl;

   }

   // clean up
   cudaStreamDestroy(stream1);
   cudaStreamDestroy(stream2);
   cudaFreeHost(data);
   cudaFree(dev_data);
   cudaFree(dev_key);
   cudaFree(dev_val);
   delete [] key;
   delete [] val;

}
$ nvcc -arch=sm_60 -std=c++11 -o t44 t44.cu
$ ./t44
cached_allocator::allocator(): no free block found; calling cuda::malloc
cached_allocator::allocator(): found a hit
t_copy: 100.329, t_sort: 110.122, t_both1: 109.585
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.441, t_sort: 106.454, t_both1: 109.692
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.595, t_sort: 106.507, t_both1: 109.436
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.35, t_sort: 106.463, t_both1: 109.517
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.486, t_sort: 106.473, t_both1: 109.6
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.324, t_sort: 106.385, t_both1: 109.551
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.4, t_sort: 106.549, t_both1: 109.692
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.521, t_sort: 106.445, t_both1: 109.719
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.362, t_sort: 106.413, t_both1: 109.762
cached_allocator::allocator(): found a hit
cached_allocator::allocator(): found a hit
t_copy: 100.349, t_sort: 106.37, t_both1: 109.52
cached_allocator::free_all(): cleaning up after ourselves...
$

CentOS 7.4,CUDA 9.1,Tesla P100

答案 1 :(得分:1)

非常感谢你。我测试了你的代码,它确实解决了这个问题。我还找到了使用CUB的替代解决方案(见下文)。主要区别在于您必须预先为基数排序分配所有必要的内存(而不是使用缓存的分配器)。

$ cat main_cub.cu 
#include <cuda_runtime.h>
#include <random>
#include <iostream>
#include <sys/time.h>
#include <cub/device/device_radix_sort.cuh>

int main() {

    // size of arrays
    const int n = 300000000;

    // random number generator
    std::mt19937 rng;

    // key/val on host
    uint32_t * key = new uint32_t[n];
    uint32_t * val = new uint32_t[n];

    // fill key val
    for(int i = 0; i < n; i++) {
        key[i] = rng();
        val[i] = i;
    }

    // key/val on device
    uint32_t * dev_key_in;
    uint32_t * dev_val_in;

    // allocate memory on GPU for key/val
    cudaMalloc((void**)&dev_key_in, n*sizeof(uint32_t));
    cudaMalloc((void**)&dev_val_in, n*sizeof(uint32_t));

    // copy key/val onto the device
    cudaMemcpy(dev_key_in, key, n*sizeof(uint32_t), cudaMemcpyHostToDevice);
    cudaMemcpy(dev_val_in, val, n*sizeof(uint32_t), cudaMemcpyHostToDevice);

    // sorted key/val on device
    uint32_t * dev_key_out;
    uint32_t * dev_val_out;

    // allocate memory on device for sorted key/val
    cudaMalloc((void**)&dev_key_out, n*sizeof(uint32_t));
    cudaMalloc((void**)&dev_val_out, n*sizeof(uint32_t));

    // determine how much temp storage cub needs
    void * dev_temp_storage = NULL;
    size_t temp_storage_bytes = 0;
    cub::DeviceRadixSort::SortPairs(dev_temp_storage, temp_storage_bytes, dev_key_in, dev_key_out, dev_val_in, dev_val_out, n);

    // allocate the temp storage for cub
    cudaMalloc((void**)&dev_temp_storage, temp_storage_bytes);

    // data on host
    uint32_t * data;

    // allocate pinned memory for data on host
    cudaMallocHost((void**)&data, n*sizeof(uint32_t));

    // fill data with random numbers
    for(int i = 0; i < n; i++) {
        data[i] = rng();
    }

    // data on device
    uint32_t * dev_data;

    // allocate memory for data on the device
    cudaMalloc((void**)&dev_data, n*sizeof(uint32_t));

    // for timing
    struct timeval t1, t2;

    // two streams
    cudaStream_t stream1;
    cudaStream_t stream2;

    // create streams
    cudaStreamCreate(&stream1);
    cudaStreamCreate(&stream2);

    for(int i = 0; i < 10; i++) {

        // Copy data into dev_data on stream 1 (nothing happening on stream 2 for now)
        gettimeofday(&t1, NULL);
            cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
            cudaDeviceSynchronize();
        gettimeofday(&t2, NULL);
        double t_copy = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;


        // Sort_by_key on stream 2 (nothing hapenning on stream 1 for now)
        gettimeofday(&t1, NULL);
            cub::DeviceRadixSort::SortPairs(dev_temp_storage, temp_storage_bytes, dev_key_in, dev_key_out, dev_val_in, dev_val_out, n, 0, sizeof(uint32_t)*8, stream2);
            cudaDeviceSynchronize();
        gettimeofday(&t2, NULL);
        double t_sort = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

        // Overlap both operations
        gettimeofday(&t1, NULL);
            cub::DeviceRadixSort::SortPairs(dev_temp_storage, temp_storage_bytes, dev_key_in, dev_key_out, dev_val_in, dev_val_out, n, 0, sizeof(uint32_t)*8, stream2);
            cudaMemcpyAsync(dev_data, data, n*sizeof(uint32_t), cudaMemcpyHostToDevice, stream1);
            cudaDeviceSynchronize();
        gettimeofday(&t2, NULL);
        double t_both = double(t2.tv_sec-t1.tv_sec)*1000.0 + double(t2.tv_usec-t1.tv_usec)/1000.0;

        std::cout << "t_copy: " << t_copy << ", t_sort: " << t_sort << ", t_both: " << t_both << std::endl;

    }

    // clean up
    cudaStreamDestroy(stream1);
    cudaStreamDestroy(stream2);
    cudaFreeHost(data);
    cudaFree(dev_data);
    cudaFree(dev_key_in);
    cudaFree(dev_val_in);
    cudaFree(dev_key_out);
    cudaFree(dev_val_out);
    delete [] key;
    delete [] val;


}

您需要在编译时包含CUB头库:

 $ nvcc -arch=sm_60 -std=c++11 main_cub.cu -I./cub-1.7.4 -o cub-test

此代码给出了以下内容(CUDA 9.0,Tesla P100,NVLINK,RHEL7):

$ ./cub-test 
t_copy: 40.79, t_sort: 97.305, t_both: 99.603
t_copy: 40.809, t_sort: 96.363, t_both: 99.378
t_copy: 40.816, t_sort: 96.46, t_both: 99.347
t_copy: 40.747, t_sort: 96.473, t_both: 99.429
t_copy: 40.766, t_sort: 96.33, t_both: 99.398
t_copy: 40.947, t_sort: 96.426, t_both: 99.394
t_copy: 40.848, t_sort: 96.445, t_both: 99.406
t_copy: 40.843, t_sort: 96.395, t_both: 99.484
t_copy: 40.833, t_sort: 96.303, t_both: 99.381
t_copy: 40.831, t_sort: 96.356, t_both: 99.292