我有一个数据集,包括班次的开始和结束:
schedule = pd.DataFrame({
"start": pd.to_datetime(['2017-01-01 00:59:00', '2017-01-01 04:59:00', '2017-01-02 00:59:00', '2017-01-02 08:00:00', '2017-01-02 09:59:00']),
"end": pd.to_datetime(['2017-01-01 09:59:00', '2017-01-01 18:00:00', '2017-01-02 09:59:00', '2017-01-02 15:59:00', '2017-01-02 18:00:00']),
"employee": ['KC', 'IT', 'ED', 'NK', 'IT']
})
我希望最终能够知道有多少人(以及谁)在白天的特定时间工作。所以我尝试创建一个新的DataFrame,其时间戳为我想要的频率:
shifts = pd.DataFrame()
shifts['timestamp'] = pd.date_range(start=schedule.start.min(), end=schedule.end.max(), freq='2H')
和[有条件地]将其与我原来的时间表合并如下:
mrg = pd.merge_asof(shifts, schedule, left_on='timestamp', right_on='start').query('timestamp <= end')
结果如下:
timestamp employee end start
0 2017-01-01 00:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
1 2017-01-01 02:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
2 2017-01-01 04:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
3 2017-01-01 06:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
4 2017-01-01 08:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
5 2017-01-01 10:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
现在我的问题是,当KC和IT都在工作时,2017-01-01 04:59:00和2017-01-01 09:59:00之间的时间戳,但是mrg数据帧只保留对应的行对IT。为什么我和我发送到merge_asof的参数中缺少什么?
答案 0 :(得分:1)
您似乎需要将所有employees
与timestamps
相结合,然后添加参数by
:
from itertools import product
t = pd.date_range(start=schedule.start.min(), end=schedule.end.max(), freq='2H')
e = schedule['employee'].unique().tolist()
shifts = pd.DataFrame(list(product(t,e)), columns=['timestamp','employee'])
print (shifts.head(10))
timestamp employee
0 2017-01-01 00:59:00 KC
1 2017-01-01 00:59:00 IT
2 2017-01-01 00:59:00 ED
3 2017-01-01 00:59:00 NK
4 2017-01-01 02:59:00 KC
5 2017-01-01 02:59:00 IT
6 2017-01-01 02:59:00 ED
7 2017-01-01 02:59:00 NK
8 2017-01-01 04:59:00 KC
9 2017-01-01 04:59:00 IT
mrg = pd.merge_asof(shifts,
schedule,
left_on='timestamp',
right_on='start',
by='employee').query('timestamp <= end')
print (mrg)
timestamp employee end start
0 2017-01-01 00:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
4 2017-01-01 02:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
8 2017-01-01 04:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
9 2017-01-01 04:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
12 2017-01-01 06:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
13 2017-01-01 06:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
16 2017-01-01 08:59:00 KC 2017-01-01 09:59:00 2017-01-01 00:59:00
17 2017-01-01 08:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
21 2017-01-01 10:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
25 2017-01-01 12:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
29 2017-01-01 14:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
33 2017-01-01 16:59:00 IT 2017-01-01 18:00:00 2017-01-01 04:59:00
50 2017-01-02 00:59:00 ED 2017-01-02 09:59:00 2017-01-02 00:59:00
54 2017-01-02 02:59:00 ED 2017-01-02 09:59:00 2017-01-02 00:59:00
58 2017-01-02 04:59:00 ED 2017-01-02 09:59:00 2017-01-02 00:59:00
62 2017-01-02 06:59:00 ED 2017-01-02 09:59:00 2017-01-02 00:59:00
66 2017-01-02 08:59:00 ED 2017-01-02 09:59:00 2017-01-02 00:59:00
67 2017-01-02 08:59:00 NK 2017-01-02 15:59:00 2017-01-02 08:00:00
69 2017-01-02 10:59:00 IT 2017-01-02 18:00:00 2017-01-02 09:59:00
71 2017-01-02 10:59:00 NK 2017-01-02 15:59:00 2017-01-02 08:00:00
73 2017-01-02 12:59:00 IT 2017-01-02 18:00:00 2017-01-02 09:59:00
75 2017-01-02 12:59:00 NK 2017-01-02 15:59:00 2017-01-02 08:00:00
77 2017-01-02 14:59:00 IT 2017-01-02 18:00:00 2017-01-02 09:59:00
79 2017-01-02 14:59:00 NK 2017-01-02 15:59:00 2017-01-02 08:00:00
81 2017-01-02 16:59:00 IT 2017-01-02 18:00:00 2017-01-02 09:59:00