数据描述:数据集包含有关用户年龄,性别和所持会员资格的信息。
目标:根据预定义的条件创建新列以标识每个用户的组/标签。
年龄条件:多个年龄段:
18 >= age <= 24, 25 >= age <=30, 31 >= age <= 41, 41 >= age <= 60, age >= 61
Gender: M/F
Membership: A,B,C,I
我创建了样本数据框,尝试创建新列以识别组/标签
df = data.frame(userid = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12),
age = c(18, 61, 23, 35, 30, 25, 55, 53, 45, 41, 21, NA),
gender = c('F', 'M', 'F', 'F', 'M', 'M', 'M', 'M', 'M', 'F', '<NA>', 'M'),
membership = c('A', 'B', 'A', 'C', 'C', 'B', 'A', 'A', 'I', 'I', 'A', '<NA>'))
userid age gender membership
1 1 18 F A
2 2 61 M B
3 3 23 F A
4 4 35 F C
5 5 30 M C
6 6 25 M B
7 7 55 M A
8 8 53 M A
9 9 45 M I
10 10 41 F I
11 11 21 <NA> A
12 12 NA M <NA>
根据以上数据,存在4 * 2 * 5
个选项(组合)
最终结果:
userid age gender membership GroupID
1 1 16 F A 1
2 2 61 M B 40
3 3 23 F A 1
4 4 35 F C 4
5 5 30 M C 5
6 6 25 M B 3
7 7 55 M A 32
8 8 53 M A 32
9 9 45 M I 34
10 10 41 F I 35
userid age gender membership GroupID
1 1 18 F A 1
2 2 61 M B 40
3 3 23 F A 1
4 4 35 F C 4
5 5 30 M C 5
6 6 25 M B 3
7 7 55 M A 32
8 8 53 M A 32
9 9 45 M I 34
10 10 41 F I 35
11 11 21 <NA> A 43 (assuming it will auto-detec combo)
12 12 NA M <NA> 46
我相信我的组合计算是正确的,如果是这样,我如何使用dplyr或任何其他选项来获得上面的数据框。
使用多个if条件确认所有选项?
在dplyr
中有一种方法可以为每列实际提供条件来设置分组条件:
df %>% group_by(age, gender, membership)
答案 0 :(得分:1)
两个选项,
# install.packages(c("tidyverse""), dependencies = TRUE)
library(tidyverse)
df %>% mutate(ageCat = cut(age, breaks = c(-Inf, 24, 30, 41, 60, Inf))) %>%
mutate(GroupID = group_indices(., ageCat, gender, membership)) %>% select(-ageCat)
#> userid age gender membership GroupID
#> 1 1 18 F A 2
#> 2 2 61 M B 9
#> 3 3 23 F A 2
#> 4 4 35 F C 5
#> 5 5 30 M C 4
#> 6 6 25 M B 3
#> 7 7 55 M A 7
#> 8 8 53 M A 7
#> 9 9 45 M I 8
#> 10 10 41 F I 6
#> 11 11 21 <NA> A 1
#> 12 12 NA M <NA> 10
这里我举例说明了类别为1
和4
的解决方案,您必须自己编写其余的代码。
df %>% mutate(GroupID =
ifelse((age >= 18 | age > 25) & gender == 'F' & membership == "A", 1,
ifelse((age >= 31 | age > 41) & gender == 'F' & membership == "C", 4, NA)
))
#> userid age gender membership GroupID
#> 1 1 18 F A 1
#> 2 2 61 M B NA
#> 3 3 23 F A 1
#> 4 4 35 F C 4
#> 5 5 30 M C NA
#> 6 6 25 M B NA
#> 7 7 55 M A NA
#> 8 8 53 M A NA
#> 9 9 45 M I NA
#> 10 10 41 F I NA
#> 11 11 21 <NA> A NA
#> 12 12 NA M <NA> NA
数据结构以防其他人感觉好像放手一搏,
答案 1 :(得分:1)
如果您只想使用基础R
,您可以执行以下操作:
# 1
allcombos <- expand.grid(c("M", "F"), c("A", "B", "C", "I"), 1:5)
allgroups <- do.call(paste0, allcombos) # 40 unique combinations
# 2
agegroups <- cut(df$age,
breaks = c(17, 24, 30, 41, 61, 99),
labels = c(1, 2, 3, 4, 5))
# 3
df$groupid <- paste0(df$gender, df$membership, agegroups)
df$groupid <- factor(df$groupid, levels=allgroups, labels=1:length(allgroups))
expand.grid
为您提供了一个包含三列的data.frame,其中每一行代表所提供的三个参数的唯一组合。如你所说,这些是40种组合。第二行将数据框的每一行组合在一个字符串中,如"MA1", "FA1", "MB1", etc
。cut
用于每个年龄段,并使用名称为1到5的相关年龄组。df
中创建了一个列,其中包含性别,成员资格和年龄组的三个字符组合,然后根据我们在allgroups
中找到的所有可能组合将其转换为因子。 答案 2 :(得分:1)
你可以试试这个:
setDT(df)[,agegrp:= ifelse((df$age >= 18) & (df$age <= 24), 1, ifelse((df$age >= 25) & (df$age <= 30), 2, ifelse((df$age >= 31) & (df$age <= 41),3,ifelse((df$age >= 42) & (df$age <= 60),4,5))))]
setDT(df)[, group := .GRP, by = .(agegrp,gender, membership)]