在我的Spark(2.2)DataFrame中,每一行都是JSON:
df.head()
//output
//[{"key":"111","event_name":"page-visited","timestamp":1517814315}]
df.show()
//output
//+--------------+
//| value|
//+--------------+
//|{"key":"111...|
//|{"key":"222...|
我想将每个JSON行传递给列,以获取此result
:
key event_name timestamp
111 page-visited 1517814315
...
我试过这种方法,但它没有给我预期的结果:
import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.types._
val schema = StructType(Seq(
StructField("key", StringType, true), StructField("event_name", StringType, true), StructField("timestamp", IntegerType, true)
))
val result = df.withColumn("value", from_json($"value", schema))
和
result.printSchema()
root
|-- value: struct (nullable = true)
| |-- key: string (nullable = true)
| |-- event_name: string (nullable = true)
| |-- timestamp: integer (nullable = true)
虽然它应该是:
result.printSchema()
root
|-- key: string (nullable = true)
|-- event_name: string (nullable = true)
|-- timestamp: integer (nullable = true)
答案 0 :(得分:2)
您最后可以使用select($"value.*")
将struct
列的元素选择为单独的列
val result = df.withColumn("value", from_json($"value", schema)).select($"value.*")