我需要创建一个包含11个参数的Spark UDF。有没有办法实现呢?
我知道我们可以创建一个最多有10个参数的UDF
以下是10个参数的代码。它的工作原理
val testFunc1 = (one: String, two: String, three: String, four: String,
five: String, six: String, seven: String, eight: String, nine: String, ten: String) => {
if (isEmpty(four)) false
else four match {
case "RDIS" => three == "ST"
case "TTSC" => nine == "UT" && eight == "RR"
case _ => false
}
}
import org.apache.spark.sql.functions.udf
udf(testFunc1)
以下是11个参数的代码。面对“未指定的值参数:dataType”问题
val testFunc2 = (one: String, two: String, three: String, four: String,
five: String, six: String, seven: String, eight: String, nine: String, ten: String, ELEVEN: String) => {
if (isEmpty(four)) false
else four match {
case "RDIS" => three == "ST"
case "TTSC" => nine == "UT" && eight == "RR" && ELEVEN == "OR"
case _ => false
}
}
import org.apache.spark.sql.functions.udf
udf(testFunc2) // compilation error
答案 0 :(得分:3)
我建议将参数打包到Map
:
val df = sc.parallelize(Seq(("a","b"),("c","d"),("e","f"))).toDF("one","two")
val myUDF = udf((input:Map[String,String]) => {
// do something with the input
input("one")=="a"
})
df
.withColumn("udf_args",map(
lit("one"),$"one",
lit("two"),$"one"
)
)
.withColumn("udf_result", myUDF($"udf_args"))
.show()
+---+---+--------------------+----------+
|one|two| udf_args|udf_result|
+---+---+--------------------+----------+
| a| b|Map(one -> a, two...| true|
| c| d|Map(one -> c, two...| false|
| e| f|Map(one -> e, two...| false|
+---+---+--------------------+----------+
答案 1 :(得分:0)
您可以创建一个新列,该列是列数组:
df.withColumns("arrCol", array("col1", "col2", "col3", ...)
现在你可以做一个数组的UDF
val testFunc(vals: Seq[String]): String = ...