我想用" nan"删除行或" -nan":
读:
excel_file = 'originale_ridotto.xlsx'
df = pd.read_excel(excel_file, na_values="NaN")
print(df)
print("I am here")
df.dropna(axis=0, how="any")
print(df)
dataframe colunmns的输出(Python 3.6.3):
Data e ora Potenza Teorica Totale CC [kW]
0 01/01/2017 00:05 0
1 01/01/2017 00:10 0
2 01/01/2017 00:15 0
3 01/01/2017 00:20 0
4 01/01/2017 00:25 0
5 01/01/2017 00:30 0
6 01/01/2017 00:35 0
7 01/01/2017 00:40 0
Potenza Attiva Totale AC [kW] Energia totale cumulata al contatore [kWh] \
0 0 7760812.5
1 0 7760812.5
2 0 7760812.5
3 0 7760812.5
4 0 7760812.5
5 0 7760812.5
6 0 7760812.5
7 0 7760812.5
Temperatura modulo [°C] Irraggiamento [W/m2]
0 0 5.0
1 0 6.0
2 0 NaN
3 0 2.0
4 0 3.0
5 0 NaN
6 0 7.0
7 0 9.0
Potenza Attiva Inv.1Blocco1 [kW]
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
Data e ora Potenza Teorica Totale CC [kW]
0 01/01/2017 00:05 0
1 01/01/2017 00:10 0
2 01/01/2017 00:15 0
3 01/01/2017 00:20 0
4 01/01/2017 00:25 0
5 01/01/2017 00:30 0
6 01/01/2017 00:35 0
7 01/01/2017 00:40 0
Potenza Attiva Totale AC [kW] Energia totale cumulata al contatore [kWh]
0 0 7760812.5
1 0 7760812.5
2 0 7760812.5
3 0 7760812.5
4 0 7760812.5
5 0 7760812.5
6 0 7760812.5
7 0 7760812.5
Temperatura modulo [°C] Irraggiamento [W/m2] \
0 0 5.0
1 0 6.0
2 0 NaN
3 0 2.0
4 0 3.0
5 0 NaN
6 0 7.0
7 0 9.0
Potenza Attiva Inv.1Blocco1 [kW]
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
df.dropna(axis=0, how="any")
不会删除这些行。为什么?
答案 0 :(得分:0)
您正在创建已清理的数据框,但您并未记得"记住"它。 df.dropna(how='any')
返回已清理的df
- 您需要分配它,然后使用它:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(0,1000,size=(10, 10)), columns=list('ABCDEFGHIJ'))
# ignoring the warnings
df['A'][2] = np.NaN
df['C'][3] = np.NaN
df['I'][5] = np.NaN
df['E'][7] = np.NaN
print(df)
df = df.dropna(how='any') # this returns a NEW dataframe, it does not modify in place
print(df)
输出:
A B C D E F G H I J
0 314.0 664 855.0 101 764.0 251 503 783 153.0 474
1 903.0 77 546.0 205 113.0 519 115 45 988.0 964
2 NaN 155 481.0 243 165.0 696 255 123 802.0 228
3 406.0 603 NaN 84 390.0 545 651 549 440.0 982
4 796.0 626 139.0 810 474.0 257 407 264 680.0 164
5 443.0 132 545.0 380 420.0 885 704 596 NaN 778
6 285.0 317 238.0 437 508.0 189 501 738 605.0 290
7 144.0 426 220.0 573 NaN 758 581 420 544.0 173
8 864.0 369 541.0 405 863.0 45 522 178 705.0 419
9 936.0 664 547.0 793 68.0 77 364 633 547.0 790
A B C D E F G H I J
0 314.0 664 855.0 101 764.0 251 503 783 153.0 474
1 903.0 77 546.0 205 113.0 519 115 45 988.0 964
4 796.0 626 139.0 810 474.0 257 407 264 680.0 164
6 285.0 317 238.0 437 508.0 189 501 738 605.0 290
8 864.0 369 541.0 405 863.0 45 522 178 705.0 419
9 936.0 664 547.0 793 68.0 77 364 633 547.0 790